Effect of Levy Flight on the discrete optimum design of steel skeletal structures using metaheuristics

2017 ◽  
Vol 24 (1) ◽  
pp. 93-112 ◽  
Author(s):  
Ibrahim Aydogdu ◽  
Serdar Carbas ◽  
Alper Akin
2019 ◽  
Vol 12 (4) ◽  
pp. 329-337 ◽  
Author(s):  
Venubabu Rachapudi ◽  
Golagani Lavanya Devi

Background: An efficient feature selection method for Histopathological image classification plays an important role to eliminate irrelevant and redundant features. Therefore, this paper proposes a new levy flight salp swarm optimizer based feature selection method. Methods: The proposed levy flight salp swarm optimizer based feature selection method uses the levy flight steps for each follower salp to deviate them from local optima. The best solution returns the relevant and non-redundant features, which are fed to different classifiers for efficient and robust image classification. Results: The efficiency of the proposed levy flight salp swarm optimizer has been verified on 20 benchmark functions. The anticipated scheme beats the other considered meta-heuristic approaches. Furthermore, the anticipated feature selection method has shown better reduction in SURF features than other considered methods and performed well for histopathological image classification. Conclusion: This paper proposes an efficient levy flight salp Swarm Optimizer by modifying the step size of follower salp. The proposed modification reduces the chances of sticking into local optima. Furthermore, levy flight salp Swarm Optimizer has been utilized in the selection of optimum features from SURF features for the histopathological image classification. The simulation results validate that proposed method provides optimal values and high classification performance in comparison to other methods.


2021 ◽  
pp. 1-12
Author(s):  
Heming Jia ◽  
Chunbo Lang

Salp swarm algorithm (SSA) is a meta-heuristic algorithm proposed in recent years, which shows certain advantages in solving some optimization tasks. However, with the increasing difficulty of solving the problem (e.g. multi-modal, high-dimensional), the convergence accuracy and stability of SSA algorithm decrease. In order to overcome the drawbacks, salp swarm algorithm with crossover scheme and Lévy flight (SSACL) is proposed. The crossover scheme and Lévy flight strategy are used to improve the movement patterns of salp leader and followers, respectively. Experiments have been conducted on various test functions, including unimodal, multimodal, and composite functions. The experimental results indicate that the proposed SSACL algorithm outperforms other advanced algorithms in terms of precision, stability, and efficiency. Furthermore, the Wilcoxon’s rank sum test illustrates the advantages of proposed method in a statistical and meaningful way.


Author(s):  
Naga Lakshmi Gubbala Venkata ◽  
Jaya Laxmi Askani ◽  
Venkataramana Veeramsetty

Abstract Optimal placement of Distributed Generation (DG) is a crucial challenge for Distribution Companies (DISCO’s) to run the distribution network in good operating conditions. Optimal positioning of DG units is an optimization issue where maximization of DISCO’s additional benefit due to the installation of DG units in the network is considered to be an objective function. In this article, the self adaptive levy flight based black widow optimization algorithm is used as an optimization strategy to find the optimum position and size of the DG units. The proposed algorithm is implemented in the IEEE 15 and PG & E 69 bus management systems in the MATLAB environment. Based on the simulation performance, it has been found that with the correct location and size of the DG modules, the distribution network can be run with maximum DISCO’s additional benefit.


2021 ◽  
Vol 11 (3) ◽  
pp. 992
Author(s):  
Chanuri Charin ◽  
Dahaman Ishak ◽  
Muhammad Ammirrul Atiqi Mohd Zainuri ◽  
Baharuddin Ismail

This paper presents a novel modified Levy flight optimization for a photovoltaic PV solar energy system. Conventionally, the Perturb and Observe (P&O) algorithm has been widely deployed in most applications due to its simplicity and ease of implementation. However, P&O suffers from steady-state oscillation and stability, besides its failure in tracking the optimum power under partial shading conditions and fast irradiance changes. Therefore, a modified Levy flight optimization is proposed by incorporating a global search of beta parameters, which can significantly improve the tracking capability in local and global searches compared to the conventional methods. The proposed modified Levy flight optimization is verified with simulations and experiments under uniform, non-uniform, and dynamic conditions. All results prove the advantages of the proposed modified Levy flight optimization in extracting the optimal power with a fast response and high efficiency from the PV arrays.


Author(s):  
Davut Izci

This paper deals with the design of an optimally performed proportional–integral–derivative (PID) controller utilized for speed control of a direct current (DC) motor. To do so, a novel hybrid algorithm was proposed which employs a recent metaheuristic approach, named Lévy flight distribution (LFD) algorithm, and a simplex search method known as Nelder–Mead (NM) algorithm. The proposed algorithm (LFDNM) combines both LFD and NM algorithms in such a way that the good explorative behaviour of LFD and excellent local search capability of NM help to form a novel hybridized version that is well balanced in terms of exploration and exploitation. The promise of the proposed structure was observed through employment of a DC motor with PID controller. Optimum values for PID gains were obtained with the aid of an integral of time multiplied absolute error objective function. To verify the effectiveness of the proposed algorithm, comparative simulations were carried out using cuckoo search algorithm, genetic algorithm and original LFD algorithm. The system behaviour was assessed through analysing the results for statistical and non-parametric tests, transient and frequency responses, robustness, load disturbance, energy and maximum control signals. The respective evaluations showed better performance of the proposed approach. In addition, the better performance of the proposed approach was also demonstrated through experimental verification. Further evaluation to demonstrate better capability was performed by comparing the LFDNM-based PID controller with other state-of-the-art algorithms-based PID controllers with the same system parameters, which have also confirmed the superiority of the proposed approach.


2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Sayan Bhattacherjee ◽  
Sushil Mujumdar ◽  
Somnath Ghosh
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document