Magnetic Force for 2 DOF Suspension System Using Permanent Magnet

2002 ◽  
Vol 2002.40 (0) ◽  
pp. 343-344
Author(s):  
Keiji Masaki ◽  
Koichi Oka
Author(s):  
Sumei Gao ◽  
Quanyong Ju ◽  
Chaowu Jin

In this paper, a kind of permanent magnet (PM) suspension active mass drive mechanism is proposed, and its structure is designed. It has the advantages of non-contact, almost zero friction, small volume, and so on. Aiming at the active driving mass mechanism of PM suspension, the unidirectional PM suspension system and bi-directional PM suspension system are designed respectively, and their analytical models are established. By analyzing and calculating the magnetic force of the unidirectional and bi-directional PM suspension system, the support coefficient of the suspension system is deduced. After theoretical analysis, the structure is simulated and verified by ANSYS MAXWELL 3D in order to determine the correctness of the analytical calculation of the model. Finally, a test device is made and experiments are carried out in the constant temperature laboratory. The experimental results show that the Nd-Fe-B PMs used in the unidirectional suspension system can provide a maximum force of 260 N, which verify the feasibility of the PM suspension active mass drive system.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 1461-1468
Author(s):  
Ting Dong ◽  
Juyan Huang ◽  
Bing Peng ◽  
Ling Jian

The calculation accuracy of unbalanced magnetic forces (UMF) is very important to the design of rotor length, because it will effect the shaft deflection. But in some permanent magnet synchronous motors (PMSMs) with fractional slot concentrated windings (FSCW), the UMF caused by asymmetrical stator topology structure is not considered in the existing deflection calculation, which is very fatal for the operational reliability, especially for the PMSMs with the large length-diameter ratio, such as submersible PMSMs. Therefore, the part of UMF in the asymmetrical stator topology structure PMSMs caused by the choice of pole-slot combinations is analysized in this paper, and a more accurate rotor deflection calculation method is also proposed.


2020 ◽  
Vol 7 ◽  

A three-dimensional field solution is presented foraxially polarized permanent magnet cylinders. The fieldcomponents are expressed in terms of finite sums of elementaryfunctions and are easily programmable. They can be used todetermine the operating point of rare-earth magnet cylinders.They are also useful for performing rapid parametriccalculations of field strength as a function of materialproperties and dimensions. The field components aredeveloped for different magnet arrangements by taking intoaccount the back iron. Also the method of images is used. Usingthe field equations, three-dimensional analytical expressionsare derived for computing the magnetic force between axiallypolarized permanent-magnet cylinders for different magneticarrangements. The field calculated results are in goodagreement with the experimental data.


2011 ◽  
Vol 2-3 ◽  
pp. 1099-1104
Author(s):  
Feng Sun ◽  
Koichi Oka ◽  
Jun Jie Jin

This paper proposes an improvement method of zero suspension force performance using a special permanent magnet for a magnetic suspension device. The zero suspension force of a permanent magnetic suspension device is indispensable for floating off when the suspended object is stuck on accidentally. Generally, the magnetic suspension system using permanent magnet is difficult to realize the zero suspension force, since the permanent magnet cannot make its attractive force zero. However, the proposed magnetic suspension device has realized the semi-zero power suspension and semi-zero suspension force, which mainly consists of a disk-shape permanent magnet, two “F” shape iron cores, a suspended object, and an actuator. In the magnetic suspension device, since there is magnetic leakage, the suspension force could not be made exact zero. Therefore, in this paper, the zero suspension force will be improved using a special shape permanent magnet. The comparison results indicate that the zero suspension force is decreased about 80 percent.


2017 ◽  
Vol 66 (4) ◽  
pp. 815-828
Author(s):  
Chukwuemeka Chijioke Awah ◽  
Ogbonnaya Inya Okoro

Abstract The torque profile of a double-stator permanent magnet (PM) synchronous machine of 90 mm stator diameter having different rotor pole numbers as well as dual excitation is investigated in this paper. The analysis includes a comparative study of the machine’s torque and power-speed curves, static torque and inductance characteristics, losses and unbalanced magnetic force. The most promising flux-weakening potential is revealed in 13- and 7-rotor pole machines. Moreover, the machines having different rotor/stator (Nr/Ns) pole combinations of the form Nr = Ns ± 1 have balanced and symmetric static torque waveforms variation with the rotor position in contrast to the machines having Nr = Ns ± 2. Further, the inductance results of the analyzed machines reveal that the machines with odd rotor pole numbers have better fault-tolerant capability than their even rotor pole equivalents. A prototype of the developed double-stator machine having a 13-pole rotor is manufactured and tested for verification.


2012 ◽  
Vol 472-475 ◽  
pp. 912-916
Author(s):  
Ding Guo Huang ◽  
Song Liu ◽  
Hong Guang Jiao ◽  
Fei Yue Wang

This new dry magnetic separator has a special structure. It has many magnetic roll which are staggered like a stairsteps. It can finish the task of separating different minerals with only this one machine. And also it can make the different magnetic material which are in the same mineral separate at the same time. The permanent magnet system is made of large fan-shaped magnet. The magnet pole N and S are staggered and has perfect performance of magnetic separation. And the magnetic force is made full use by going-up dynamic separation. And also it gives an analysis of stress in the magnetic field. It also shows that its separation idex is better, the economic benefits are obvious, and it has broader prospects of popularization and application.


Sign in / Sign up

Export Citation Format

Share Document