402 Investigation on influence of surface roughness of cooling surface on ice structure formed by control of initial ice crystal orientation

2014 ◽  
Vol 2014.24 (0) ◽  
pp. 121-122
Author(s):  
Takahiro IKEYA ◽  
Koji MATSUMOTO ◽  
Yoshikazu TERAOKA ◽  
Kazuyoshi MATSUNAGA ◽  
Masato HONDA
1996 ◽  
Vol 35 (Part 1, No. 2A) ◽  
pp. 714-719 ◽  
Author(s):  
Masafumi Nakada ◽  
Norikazu Ohshima ◽  
Mitsuya Okada

2015 ◽  
Vol 51 (11) ◽  
pp. 1-4 ◽  
Author(s):  
Mitsuru Ohtake ◽  
Akira Itabashi ◽  
Masaaki Futamoto ◽  
Fumiyoshi Kirino ◽  
Nobuyuki Inaba

2014 ◽  
Vol 14 (22) ◽  
pp. 12357-12371 ◽  
Author(s):  
N. B. Magee ◽  
A. Miller ◽  
M. Amaral ◽  
A. Cumiskey

Abstract. Here we show high-magnification images of hexagonal ice crystals acquired by environmental scanning electron microscopy (ESEM). Most ice crystals were grown and sublimated in the water vapor environment of an FEI-Quanta-200 ESEM, but crystals grown in a laboratory diffusion chamber were also transferred intact and imaged via ESEM. All of these images display prominent mesoscopic topography including linear striations, ridges, islands, steps, peaks, pits, and crevasses; the roughness is not observed to be confined to prism facets. The observations represent the most highly magnified images of ice surfaces yet reported and expand the range of conditions in which rough surface features are known to be conspicuous. Microscale surface topography is seen to be ubiquitously present at temperatures ranging from −10 °C to −40 °C, in supersaturated and subsaturated conditions, on all crystal facets, and irrespective of substrate. Despite the constant presence of surface roughness, the patterns of roughness are observed to be dramatically different between growing and sublimating crystals, and transferred crystals also display qualitatively different patterns of roughness. Crystals are also demonstrated to sometimes exhibit inhibited growth in moderately supersaturated conditions following exposure to near-equilibrium conditions, a phenomenon interpreted as evidence of 2-D nucleation. New knowledge about the characteristics of these features could affect the fundamental understanding of ice surfaces and their physical parameterization in the context of satellite retrievals and cloud modeling. Links to supplemental videos of ice growth and sublimation are provided.


1994 ◽  
Vol 361 ◽  
Author(s):  
Kiyotaka Wasa ◽  
T. Satoh ◽  
K. Tab Ata ◽  
H. Adachi ◽  
Y. Ichikawa ◽  
...  

ABSTRACTUltrathin films of perovskite PbTiO3, 10–100nm thick, were epitaxially grown on miscut (001)SrTiO3 substrate by rf-magnetron sputtering at 600°C. The electron microscope and high resolution x-ray diffraction analysis suggested the evidence of epitaxial growth of (001)PbTiO3/(001)SrTiO3 with three dimensional crystal orientation. The stoichiometric film shows extremely smooth surface with the surface roughness less than 3nm. Deposition on a miscut substrate under stoichiometric conditions is essential to make continuous thin films of single crystal perovskite PbTiO3.


Author(s):  
Yoshikazu Teraoka ◽  
Ryo Fukuno ◽  
Koji Matsumoto

A control technique of crystal orientation of ice can presumably help to improve freezing processes of various industries. However, the technique without seed ice has not been established yet. The author had found that crystal orientation of ice rotated gradually during high-rate growth along a cooling wall. The purpose of this paper is to examine the crystal orientation rotation of ice during growth in several types of bended capillaries at supercooling temperature. We show that, after growing through the capillaries, c-axis of ice crystal is within a certain angle range. On the basis of the measurement the rotation of crystal orientation before and after the growth through some sections of the capillaries, we constructed an empirical model of c-axis rotating gradually during ice growth in the capillary. The calculation of the model can explain the approach process of c-axis of ice crystal growing in the bended capillary to the specified direction.


2002 ◽  
Vol 2002.42 (0) ◽  
pp. 200-201
Author(s):  
Shi hua TANG ◽  
Michiaki KOBAYASHI ◽  
Setsuo MIURA ◽  
Hiroyuki FUJIKI ◽  
Seiichi OMORI

Sign in / Sign up

Export Citation Format

Share Document