424 Nano Machining by Focused Ion Beam and Influence of Micro-Notch on Fracture Behavior of Single-Crystal Silicon Microelements

2001 ◽  
Vol 2001.76 (0) ◽  
pp. _4-49_-_4-50_
Author(s):  
Kohji MINOSHIMA ◽  
Tomota TERADA ◽  
Kenjiro KOMAI
1998 ◽  
Vol 546 ◽  
Author(s):  
Kohji Minoshima ◽  
Shigemichi Inoue ◽  
Tomota Terada ◽  
Kenjiro Komai

AbstractSimple bending tests of single-crystal silicon microelements fabricated by photoetching were performed. Silicon microelements deform elastically until final catastrophic failure, showing a brittle nature. The fracture strength increases with a decrease in specimen size, and the maximum strength reaches about 8 GPa. A Focused ion beam was used to machine a sub-µm deep notch. Such a small notch decreases the fracture strength of a microelement. Some fatigue tests were conducted in laboratory air and in distilled water: water reduces the strength of microelement under fatigue loading. Fracture surface and sample surface were closely examined with a scanning electron microscope and an atomic force microscope, and the fracture mechanisms are discussed from the nanoscopic points of view.


2020 ◽  
Vol 40 (12) ◽  
pp. 1222001
Author(s):  
宋辞 Song Ci ◽  
田野 Tian Ye ◽  
石峰 Shi Feng ◽  
张坤 Zhang Kun ◽  
沈永祥 Shen Yongxiang

Author(s):  
V. S. Kovivchak ◽  
T. V. Panova ◽  
O. V. Krivozubov ◽  
N. A. Davletkil’deev ◽  
E. V. Knyazev

2005 ◽  
Vol 297-300 ◽  
pp. 292-298 ◽  
Author(s):  
Satoru Koyama ◽  
Kazuki Takashima ◽  
Yakichi Higo

Reliability is one of the most critical issues for designing practical MEMS devices. In particular, the fracture toughness of micro-sized MEMS elements is important, as micro/nano-sized flaws can act as a crack initiation sites to cause failure of such devices. Existing MEMS devices commonly use single crystal silicon. Fracture toughness testing upon micro-sized single crystal silicon was therefore carried out to examine whether a fracture toughness measurement technique, based upon the ASTM standard, is applicable to 1/1000th sized silicon specimens. Notched cantilever beam type specimens were prepared by focused ion beam machining. Two specimens types with different notch orientations were prepared. The notch plane/direction were (100)/[010], and (110)/[ _ ,110], respectively. Fracture toughness tests were carried out using a mechanical testing machine for micro-sized specimens. Fracture has been seen to occur in a brittle manner in both orientations. The provisional fracture toughness values (KQ) are 1.05MPam1/2 and 0.96MPam1/2, respectively. These values meet the micro-yielding criteria for plane strain fracture toughness values (KIC). Fracture toughness values for the orientations tested are of the same order as values in the literature. The results obtained in this investigation indicate that the fracture toughness measurement method used is applicable for micro-sized components of single crystal silicon in MEMS devices.


2016 ◽  
Vol 163 ◽  
pp. 523-532 ◽  
Author(s):  
Toshiyuki Tsuchiya ◽  
Kenji Miyamoto ◽  
Koji Sugano ◽  
Osamu Tabata

Sign in / Sign up

Export Citation Format

Share Document