1406 Sliding Bearing of Screw Compressors(9 th Report) : About the oil film pressure of the spiral groove bearing

2006 ◽  
Vol 2006.81 (0) ◽  
pp. _14-6_
Author(s):  
Masanori MATSUO
2012 ◽  
Vol 614-615 ◽  
pp. 469-474
Author(s):  
Ai Ping Zhang ◽  
Sheng Qiang Lin

Calculating navier-stokes equation to study oil film pressure characteristics of three oil wedge bearing by using CFD software. Studied how to the three oil wedge sliding bearing effect on rotor stability, and analyzing oil film pressure characteristics of three oil wedge sliding bearing and cylindrical bearing. The results showed that three oil wedge bearing is much more stable than the cylindrical bearing, it is more advantageous to the running rotor and unit at stable working than the cylindrical bearing in the same oil film thickness and inlet pressure.


2013 ◽  
Vol 135 (2) ◽  
Author(s):  
J. Wang ◽  
C. H. Venner ◽  
A. A. Lubrecht

The effect of single-sided and double-sided harmonic surface waviness on the film thickness, pressure, and temperature oscillations in an elastohydrodynamically lubricated eccentric-tappet pair has been investigated in relation to the eccentricity and the waviness wavelength. The results show that, during one working cycle, the waviness causes significant fluctuations of the oil film, pressure, and temperature, as well as a reduction in minimum film thickness. Smaller wavelength causes more dramatic variations in oil film. The fluctuations of the pressure, film thickness, temperature, and traction coefficient caused by double-sided waviness are nearly the same compared with the single-sided waviness, but the variations are less intense.


2016 ◽  
Vol 68 (3) ◽  
pp. 349-360 ◽  
Author(s):  
Amit Singla ◽  
Amit Chauhan

Purpose The current trend of modern industry is to use machineries which rotate at high speed along with the capability of carrying heavy rotor loads. This paper aims at static thermal analysis of two different profiles of non-circular journal bearings – a true elliptical bearing and orthogonal bearing. Design/methodology/approach The Reynolds equation has been solved through finite difference method to compute the oil film pressure. Parabolic temperature profile approximation technique has been used to solve the energy equation and thus used for computation of various bearing performance characteristics such as thermo-hydrodynamic oil film pressure, temperature, load capacity, Sommerfeld number and power loss characteristics across the bearing. The effect of ellipticity ratio on the bearing performance characteristics has also been obtained for both the elliptical and vertical offset bearing using three different commercially available grades of oil (Hydrol 32, 68 and 100). Findings It has been observed that the thermo-hydrodynamic pressure and temperature rise of the oil film is less in orthogonal bearing as compared to the true elliptical bearing for same operating conditions. The effect of ellipticity ratio of non-circularity on bearing performance parameters have been observed to be less in case of elliptical bearing as compared to orthogonal bearing. It has been concluded that though the rise in oil film temperature is high for true elliptical bearing, but still it should be preferred over orthogonal profile under study, as it has comparably good load-carrying capacity. Originality/value The performance parametric analysis will help the designers to select such kind of non-circular journal bearing for various applications.


2013 ◽  
Vol 6 (20) ◽  
pp. 3871-3878 ◽  
Author(s):  
Diyar I. Ahmed ◽  
S. Kasolang ◽  
Basim A. Khidhir ◽  
B.F. Yousif

2019 ◽  
Vol 11 (12) ◽  
pp. 168781401989585 ◽  
Author(s):  
Seongsu Kim ◽  
Juhwan Choi ◽  
Jin-Gyun Kim ◽  
Ryo Hatakeyama ◽  
Hiroshi Kuribara ◽  
...  

In this work, we propose a robust modeling and analysis technique of the piston-lubrication system considering fluid–structure interaction. The proposed schemes are based on combining the elastohydrodynamic analysis and multi-flexible body dynamics. In particular, multi-flexible body dynamics analysis can offer highly precise numerical results regarding nonlinear deformation of the piston skirt and cylinder bore, which can lead to more accurate results of film thickness for gaps filled with lubricant and of relative velocity of facing surfaces between the piston skirt and the cylinder block. These dynamic analysis results are also used in the elastohydrodynamic analysis to compute the oil film pressure and asperity contact pressure that are used as external forces to evaluate the dynamic motions of the flexible bodies. A series of processes are repeated to accurately predict the lubrication characteristics such as the clearance and oil film pressure. In addition, the Craig–Bampton modal reduction, which is a standard type of component mode synthesis, is employed to accelerate the computational speed. The performance of the proposed modeling schemes implemented in the RecurDyn™ multi-flexible body dynamics environment is demonstrated using a well-established numerical example, and the proposed simulation methods are also verified with the experimental results in a motor cycle engine (gasoline) which has a four cycle, single cylinder, overhead camshaft (OHC), air cooled.


2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Xinyu Pang ◽  
Wangwang Jiang ◽  
Xiaowu Jin

In order to study the influence of torque load on the lubrication and wear of the sliding bearing of the rigid rotor system, the theoretical and experimental researches on the single-span rotor system with low speed were carried out. A special force sensor was used to measure the bearing load under different torque excitations, and the oil film pressure was calculated. The oil film pressure and thickness of sliding bearing under low speed (210r/min) were simulated by combining the lubrication theory. Based on the film thickness ratio theory, the corresponding relationship between the lubrication state and the torque load value was deduced. In addition, the wear rate and abrasive grain morphology of sliding bearing with different torque values were analyzed by means of oil sample preparation to verify this correspondence. The results show that the film thickness ratio has a logarithmic function relationship with the constant torque load, and the film thickness ratio curve can be used to determine the corresponding torque values under different lubrication states. The wear rate under mixed lubrication state increases exponentially with the torque load, and the main wear mechanism is adhesive wear and abrasive wear. The research results have certain guiding significance to the adjustment of the actual running condition of sliding bearing and its life prediction.


Author(s):  
Zhenpeng Wu ◽  
Vanliem Nguyen ◽  
Vanquynh Le ◽  
Xuanlong Le ◽  
Vancuong Bui

The study proposes a design and optimization of textures on the surface of crankpin bearing to improve the lubrication efficiency and friction power loss (LE-FPL). A hydrodynamic lubrication model of crankpin bearing considering the impact of the external dynamic load and micro asperity contact is established. Based on the established model, the lubrication textures designed on the bearing surface are then simulated and optimized through the algorithms developed in Matlab environment and multi-objective optimization method. Increasing the oil film pressure and reducing the contact force ( Wac) in the asperity contact region, friction force ( Ff), and friction coefficient ( µ) of crankpin bearing are the objective functions to evaluate the LE-FPL. The study results indicate that the lubrication textures designed on the bearing surface have an obvious effect on improving the LE-FPL. Especially, with the optimized textures, the maximum oil film pressure is greatly increased by 44.8% while the maximum values of Wac and Ff are significantly reduced by 22% and 25%. Consequently, the lubrication textures added on the surface of crankpin bearing can greatly improve the LE-FPL.


2017 ◽  
Vol 739 ◽  
pp. 193-201
Author(s):  
Seong Su Kim ◽  
Juh Wan Choi ◽  
Sung Soo Rhim ◽  
Jin Hwan Choi

An analysis for operating characteristics of piston lubrication system is performed based on the numerical model in this study. Dynamic piston lubrication characteristics such as oil film pressure and thickness distribution can be analyzed through a numerical model with an integration of elastohydrodynamics and multi-flexible-body dynamics (MFBD). In particular, the oil film thickness variation by elastic deformation is considered in the elastohydrodynamic analysis by using the modal reduction method in MFBD system. And this effect is reflected on the fluid governing equations to evaluate the oil film pressure in the lubrication region. A series of process proposed in this study is available for the analysis of realistic elastohydrodynamic lubrication phenomenon. A numerical example for the piston lubrication system is also demonstrated.


Sign in / Sign up

Export Citation Format

Share Document