M107 Study on In-Flow Fluidelastic Instability of Square Tube Arrays Subjected to Air Cross Flow

2015 ◽  
Vol 2015.90 (0) ◽  
pp. 267
Author(s):  
Shinichiro HAGIWARA ◽  
Tomomichi NAKAMURA
Author(s):  
Tomomichi Nakamura ◽  
Shinichiro Hagiwara ◽  
Joji Yamada ◽  
Kenji Usuki

In-flow instability of tube arrays is a recent major issue in heat exchanger design since the event at a nuclear power plant in California [1]. In our previous tests [2], the effect of the pitch-to-diameter ratio on fluidelastic instability in triangular arrays is reported. This is one of the present major issues in the nuclear industry. However, tube arrays in some heat exchangers are arranged as a square array configuration. Then, it is important to study the in-flow instability on the case of square arrays. The in-flow fluidelastic instability of square arrays is investigated in this report. It was easy to observe the in-flow instability of triangular arrays, but not for square arrays. The pitch-to-diameter ratio, P/D, is changed from 1.2 to 1.5. In-flow fluidelastic instability was not observed in the in-flow direction. Contrarily, the transverse instability is observed in all cases including the case of a single flexible cylinder. The test results are finally reported including the comparison with the triangular arrays.


Author(s):  
Stephen Olala ◽  
Njuki W. Mureithi

In-plane instability of tube arrays has not been a major concern to steam generator designers until recently following observations of streamwise tube failure in a nuclear power plant in U.S.A. However, modeling of fluidelastic instability in two-phase flows still remains a challenge. In the present work, detailed steady fluid force measurements for a kernel of an array of tubes in a rotated triangular tube array of P/D=1.5 subjected to air-water two-phase flows for a series of void fractions and a Reynolds number (based on the pitch velocity), Re = 7.2 × 104 has been conducted. The measured steady fluid force coefficients and their derivatives, with respect to streamwise static displacements of the central tube, are employed in the quasi-steady model [1, 2], originally developed for single phase flows, to analyze in-plane fluidelastic instability of multiple flexible arrays in two-phase flows. The results are consistent with dynamic stability tests [3].


1995 ◽  
Vol 117 (1) ◽  
pp. 31-39 ◽  
Author(s):  
F. L. Eisinger ◽  
M. S. M. Rao ◽  
D. A. Steininger ◽  
K. H. Haslinger

Tube arrays exposed to air, gas or liquid cross-flow can vibrate due to vortex-shedding, turbulence, or fluidelastic instability. The major emphasis of this paper is on the phenomenon of fluidelastic instability (or fluidelastic vibration). A numerical model is applied to the simulation of fluidelastic vibration of representative tubes in a tube bundle, based on S. S. Chen’s unsteady flow theory. The results are validated against published data based on linear cases. The model is then applied to a nonlinear structure of a U-bend tube bundle with clearances at supports, and the computed results compared to those obtained by experimental testing. The numerical studies were performed using the ABAQUS-EPGEN finite element code using a special subroutine incorporating fluidelastic forces. It is shown that the results of both the linear and nonlinear modeling are in good agreement with experimental data.


Author(s):  
Robert H. Lumsden ◽  
David S. Weaver

The study of fluidelastic instability in tube arrays has been ongoing for four decades. Although much research has been conducted, a full understanding of the mechanisms involved is still not available. Designers of cross-flow heat exchangers must depend on experience and empirical data from laboratory studies. As new designs are developed, which differ from these experimental facilities, there is an increased risk of failure due to fluidelastic instability. An experimental program was conducted to examine fluidelastic instability in in-line and rotated square finned tube arrays. Three arrays of each geometry type were studied; two with serrated, helically wound finned tubes of different fin densities, and the third, a bare tube which had the same base diameter as the finned tubes. The finned tubes under consideration were commercial finned tubes of a type typically used in the fossil and process industries. The addition of fins to tubes in heat exchangers enhances heat transfer due to the increased surface area and the turbulence produced by the flow moving over the fins. The resulting flow pattern/distribution due to the fins is therefore much more complicated than in bare tube arrays. Previous research has shown that an effective diameter of a finned tube is useful in the prediction of vortex shedding. This concept is used to compare the finned tube results with the existing bare tube array guidelines for fluidelastic instability. All of the tube arrays in the present study have the same tube pitch, and have been scaled to have the same mass ratio. Results for the rotated square arrays show that the use of an effective diameter is beneficial in the scaling of fluidelastic instability and the finned tube results are found to fit within the scatter of the existing data for fluidelastic instability. For in-line square arrays, the results indicate that fins significantly increase the stability threshold.


Author(s):  
John Mahon ◽  
Craig Meskell

Models for fluidelastic instability are usually validated by comparing critical velocity predictions with experimental data. However, the scatter in this data make detailed validation problematic. As an initial step towards providing a validation database for fluidelastic instability, surface pressure measurements are presented for a cylinder in the third row of three normal triangular tube arrays (P/d = 1.32; 1.58; 1.97) with air cross flow. Surface pressure measurements were also made when the cylinder was statically displaced. Forces were calculated from the pressure measurements enabling an understanding of the force generation mechanism. The results show that the fluid force coefficients do not scale with the dynamic head but exhibit a dependency on Reynolds number and pitch ratio. However, no simple parametrisation was found for the lift force. Jet switching was found in P/d = 1.58 even when the tube was displaced. This phenomenon resulted in the large asymmetry observed in the pressure distribution around a static cylinder.


2016 ◽  
Vol 139 (3) ◽  
Author(s):  
Stephen Olala ◽  
Njuki W. Mureithi

Experimental measurements of the steady forces on a central cluster of tubes in a rotated triangular array (P/D=1.5) subjected to two-phase air–water cross-flow have been conducted. The tests were done for a series of void fractions and a Reynolds number (based on the pitch velocity), Re=7.2×104. The forces obtained and their derivatives with respect to the static streamwise displacement of the central tube in the cluster were then used to perform a quasi-steady fluidelastic instability analysis. The predicted instability velocities were found to be in good agreement with the dynamic stability tests. Since the effect of the time delay was ignored, the analysis confirmed the predominance of the stiffness-controlled mechanism in causing streamwise fluidelastic instability. The effect of frequency detuning on the streamwise fluidelastic instability threshold was also explored. It was found that frequency detuning has, in general, a stabilizing effect. However, for a large initial variance in a population of frequencies (e.g., σ2=7.84), a smaller sample drawn from the larger population may have lower or higher variance resulting in a large scatter in possible values of the stability constant, K, some even lower than the average (tuned) case. Frequency detuning clearly has important implications for streamwise fluidelastic instability in the steam generator U-bend region where in-plane boundary conditions, due to preload and contact friction variance, are poorly defined. The present analysis has, in particular, demonstrated the potential of the quasi-steady model in predicting streamwise fluidelastic instability threshold in tube arrays subjected to two-phase cross-flows.


2010 ◽  
Vol 132 (4) ◽  
Author(s):  
Marwan Hassan ◽  
Achraf Hossen

This paper presents simulations of a loosely supported cantilever tube subjected to turbulence and fluidelastic instability forces. Several time domain fluid force models are presented to simulate the damping-controlled fluidelastic instability mechanism in tube arrays. These models include a negative damping model based on the Connors equation, fluid force coefficient-based models (Chen, 1983, “Instability Mechanisms and Stability Criteria of a Group of Cylinders Subjected to Cross-Flow. Part 1: Theory,” Trans. ASME, J. Vib., Acoust., Stress, Reliab. Des., 105, pp. 51–58; Tanaka and Takahara, 1981, “Fluid Elastic Vibration of Tube Array in Cross Flow,” J. Sound Vib., 77, pp. 19–37), and two semi-analytical models (Price and Païdoussis, 1984, “An Improved Mathematical Model for the Stability of Cylinder Rows Subjected to Cross-Flow,” J. Sound Vib., 97(4), pp. 615–640; Lever and Weaver, 1982, “A Theoretical Model for the Fluidelastic Instability in Heat Exchanger Tube Bundles,” ASME J. Pressure Vessel Technol., 104, pp. 104–147). Time domain modeling and implementation challenges for each of these theories were discussed. For each model, the flow velocity and the support clearance were varied. Special attention was paid to the tube/support interaction parameters that affect wear, such as impact forces and normal work rate. As the prediction of the linear threshold varies depending on the model utilized, the nonlinear response also differs. The investigated models exhibit similar response characteristics for the lift response. The greatest differences were seen in the prediction of the drag response, the impact force level, and the normal work rate. Simulation results show that the Connors-based model consistently underestimates the response and the tube/support interaction parameters for the loose support case.


Sign in / Sign up

Export Citation Format

Share Document