Streamwise Fluidelastic Instability of Tube Arrays in Two-Phase Cross Flow

Author(s):  
Stephen Olala ◽  
Njuki W. Mureithi

In-plane instability of tube arrays has not been a major concern to steam generator designers until recently following observations of streamwise tube failure in a nuclear power plant in U.S.A. However, modeling of fluidelastic instability in two-phase flows still remains a challenge. In the present work, detailed steady fluid force measurements for a kernel of an array of tubes in a rotated triangular tube array of P/D=1.5 subjected to air-water two-phase flows for a series of void fractions and a Reynolds number (based on the pitch velocity), Re = 7.2 × 104 has been conducted. The measured steady fluid force coefficients and their derivatives, with respect to streamwise static displacements of the central tube, are employed in the quasi-steady model [1, 2], originally developed for single phase flows, to analyze in-plane fluidelastic instability of multiple flexible arrays in two-phase flows. The results are consistent with dynamic stability tests [3].

2016 ◽  
Vol 139 (3) ◽  
Author(s):  
Stephen Olala ◽  
Njuki W. Mureithi

Experimental measurements of the steady forces on a central cluster of tubes in a rotated triangular array (P/D=1.5) subjected to two-phase air–water cross-flow have been conducted. The tests were done for a series of void fractions and a Reynolds number (based on the pitch velocity), Re=7.2×104. The forces obtained and their derivatives with respect to the static streamwise displacement of the central tube in the cluster were then used to perform a quasi-steady fluidelastic instability analysis. The predicted instability velocities were found to be in good agreement with the dynamic stability tests. Since the effect of the time delay was ignored, the analysis confirmed the predominance of the stiffness-controlled mechanism in causing streamwise fluidelastic instability. The effect of frequency detuning on the streamwise fluidelastic instability threshold was also explored. It was found that frequency detuning has, in general, a stabilizing effect. However, for a large initial variance in a population of frequencies (e.g., σ2=7.84), a smaller sample drawn from the larger population may have lower or higher variance resulting in a large scatter in possible values of the stability constant, K, some even lower than the average (tuned) case. Frequency detuning clearly has important implications for streamwise fluidelastic instability in the steam generator U-bend region where in-plane boundary conditions, due to preload and contact friction variance, are poorly defined. The present analysis has, in particular, demonstrated the potential of the quasi-steady model in predicting streamwise fluidelastic instability threshold in tube arrays subjected to two-phase cross-flows.


Author(s):  
Tomomichi Nakamura ◽  
Shinichiro Hagiwara ◽  
Joji Yamada ◽  
Kenji Usuki

In-flow instability of tube arrays is a recent major issue in heat exchanger design since the event at a nuclear power plant in California [1]. In our previous tests [2], the effect of the pitch-to-diameter ratio on fluidelastic instability in triangular arrays is reported. This is one of the present major issues in the nuclear industry. However, tube arrays in some heat exchangers are arranged as a square array configuration. Then, it is important to study the in-flow instability on the case of square arrays. The in-flow fluidelastic instability of square arrays is investigated in this report. It was easy to observe the in-flow instability of triangular arrays, but not for square arrays. The pitch-to-diameter ratio, P/D, is changed from 1.2 to 1.5. In-flow fluidelastic instability was not observed in the in-flow direction. Contrarily, the transverse instability is observed in all cases including the case of a single flexible cylinder. The test results are finally reported including the comparison with the triangular arrays.


1995 ◽  
Vol 117 (4) ◽  
pp. 321-329 ◽  
Author(s):  
M. J. Pettigrew ◽  
C. E. Taylor ◽  
J. H. Jong ◽  
I. G. Currie

Two-phase cross-flow exists in many shell-and-tube heat exchangers. The U-bend region of nuclear steam generators is a prime example. Testing in two-phase flow simulated by air-water provides useful results inexpensively. However, two-phase flow parameters, in particular surface tension and density ratio, are considerably different in air-water than in steam-water. A reasonable compromise is testing in liquid-vapor Freon, which is much closer to steam-water while much simpler experimentally. This paper presents the first results of a series of tests on the vibration behavior of tube bundles subjected to two-phase Freon cross-flow. A rotated triangular tube bundle of tube-to-diameter ratio of 1.5 was tested over a broad range of void fractions and mass fluxes. Fluidelastic instability, random turbulence excitation, and damping were investigated. Well-defined fluidelastic instabilities were observed in continuous two-phase flow regimes. However, intermittent two-phase flow regimes had a dramatic effect on fluidelastic instability. Generally, random turbulence excitation forces are much lower in Freon than in air-water. Damping is very dependent on void fraction, as expected.


2005 ◽  
Vol 127 (1) ◽  
pp. 84-91 ◽  
Author(s):  
V. P. Janzen ◽  
E. G. Hagberg ◽  
M. J. Pettigrew ◽  
C. E. Taylor

The dynamic response of U-tubes to two-phase cross-flow has been studied in tests involving a simplified U-tube bundle with a set of flat-bar supports at the apex, subjected to air–water cross-flow over the mid-span region. Tube vibration and the interaction between tubes and supports were measured over a wide range of void fractions and flow rates, for three different tube-to-support clearances. The vibration properties and tube-to-support work-rates could be characterized in terms of the relative influence of fluidelastic instability and random-turbulence excitation. For the first time, in a U-bend tube bundle with liquid or two-phase flow, fluidelastic instability was observed both in the out-of-plane and in the in-plane direction. This raises the possibility of higher-than-expected tube-to-support work-rates for U-tubes restrained by flat bars, particularly if fluidelastic instability, random turbulence and loose supports combine adversely.


Author(s):  
Stephen Olala ◽  
Njuki W. Mureithi ◽  
Teguewinde Sawadogo ◽  
Michel J. Pettigrew

Detailed unsteady fluid force and phase measurements for a single tube oscillating purely in the streamwise direction in a rotated triangular tube array subjected to air-water two-phase cross-flow have been conducted in this study for homogeneous void fractions between 0% and 90%. Additionally the streamwise steady forces were measured in two-phase flow at a Reynolds number (based on the pitch velocity), Re = 7.2 × 104. The results are compared to those previously obtained for transverse direction oscillations. The measurement results show that the magnitude of the force coefficients for both directions (drag and lift) is comparable both in trend and quantitatively. However, the phase in the drag direction is negative while that for the lift is positive. The range of variation of the phase is also significantly smaller for the drag direction. Noting that negative phase corresponds to positive damping and vice versa, this observation confirms previous findings of lack of instability in the drag direction for a single flexible tube in a rotated triangular tube array. The drag steady fluid force coefficients were found to increase with dimensionless displacement in the flow direction for the entire range of void fractions considered. The derivative of the measured steady fluid force coefficient, which is an important factor in fluidelastic instability study using the quasi-steady model, was found to remain positive in the drag direction. The effect of void fraction on the unsteady fluid force coefficient and other dynamic parameters such as hydrodynamic mass and damping are also discussed.


Author(s):  
Victor P. Janzen ◽  
Erik G. Hagberg ◽  
James N. F. Patrick ◽  
Michel J. Pettigrew ◽  
Colette E. Taylor ◽  
...  

In nuclear power plant steam generators, the vibration response of tubes in two-phase cross-flow is a general concern that in some cases has become a very real long-term wear problem. This paper summarizes the results of the most recent U-bend vibration-response tests in a program designed to address this issue. The tests involved a simplified U-tube bundle with a set of flat-bar supports at the apex, subjected to two-phase air-water cross-flow over the mid-span region of the U-bend. Tube vibration properties and tube-to-support interaction in the form of work-rates were measured over a wide range of flow velocities for homogeneous void fractions from zero to 90%, with three different tube-to-support clearances. The measured vibration properties and work-rates could be characterized by the relative influence of the two most important flow-induced excitation mechanisms at work, fluidelastic instability and random-turbulence excitation. As in previous similar tests, strong effects of fluidelastic instability were observed at zero and 25% void fraction for pitch velocities greater than approximately 0.5 m/s, whereas random turbulence dominated the tube vibration and work-rate response at higher void fractions. In both cases, a link between vibration properties and the effect of the flat-bar supports could be established by comparing the vibration crossing frequency, extracted from time-domain vibration signals, to the participation of the lowest few vibration modes and to the measured work-rate. This approach may be useful when fluidelastic instability, random turbulence and loose supports all combine to result in high work-rates. Such a combination of factors is thought to be responsible for excessive U-tube fretting-wear in certain types of operating steam generators.


Author(s):  
Stephen Olala ◽  
Njuki W. Mureithi

Nuclear steam generator tubes in two-phase cross-flow may vibrate due to excitations that emanate from various sources. Of these excitation mechanisms, fluidelastic instability is the most dominant cause of tube failures in the short-term. These failures, other than leading to unscheduled plant shutdowns, may result in leakage of radioactive materials that may ultimately cause accidents and economic loss. Very limited work has been dedicated to investigating purely streamwise fluidelastic instability in tube arrays. However, recent observations of tube failure caused by streamwise or in-plane instability confirm the importance of streamwise fluidelastic instability analysis. In the present study, we present detailed dynamic cross-coupling force and phase measurement results for a central cluster of tubes in a rotated triangular tube array of Pitch-to-Diameter ratio (P/D)=1.5 subjected to air-water two-phase cross-flow, for homogeneous void fractions of 0% and 60%. The measured dynamic forces together with previously measured quasi-steady forces are necessary to estimate the time delay which is an important input for the quasi-steady fluidelastic instability model.


1996 ◽  
Vol 118 (2) ◽  
pp. 188-193 ◽  
Author(s):  
J. Marn ◽  
I. Catton

Cross-flow-induced vibrations are important phenomena in the power generation industry as they may severely damage the heat exchanger tubes due to violent oscillations and clashing. The fluidelastic instability was identified as the main driving force behind the vibrations and is highly dependent on the flow regime (single-phase versus two-phase flow). The vorticity formulation has been shown in the past to sufficiently describe the phenomena of cross-flow-induced vibrations in cylindrical arrays. This paper attempts to use the existing, well-established equations (see Bottoni and Sengpiel, 1992) and compares the results of a fluidelastic instability of an air-water mixture to available experimental data. The proposed problem is solved using finite differences by discretizing the computational domain and assuming the initial positions of the tubes.


Author(s):  
Njuki W. Mureithi

In the 80’s a number of theoretical models were developed to model fluidelastic instability, primarily for single phase flows. The models ranged from purely analytical models to semi-empirical models requiring considerable experimental data as input. While these models were very successful in uncovering the nature of fluidelastic instability and the underlying mechanisms in single phase flow, this work seemed to stop short of getting to the next step of practical application to two-phase flows. During the same period, Connors formula became ‘entrenched’ in industry to the extent that the formula now forms part of the design norms against fluidelastic instability. In an ongoing research program the quasi-steady model has been chosen as a possible candidate for modeling fluidelastic instability in two-phase flows. This paper discusses the challenges associated with accurate modeling of fluidelastic instability in two phase flows using this and other models. The unsteady model is shown to have limitations when it comes to measuring accurately the necessary unsteady fluid force coefficients. A comparison of the stability analysis results with experimental measurements shows that the quasi-steady model can give a reasonable estimate of the instability velocity as well as the inter-tube dynamics. Finally, the remaining challenges, before the quasi-steady model and possibly other models can be fully implemented for prototypical conditions are discussed. In particular the need for more work to understand the flow itself is highlighted.


Sign in / Sign up

Export Citation Format

Share Document