Development of high-speed and high-precision CNC coordinate measuring machine

2019 ◽  
Vol 2019.72 (0) ◽  
pp. C42
Author(s):  
Yuto KAJITANI ◽  
Syuhei KUROKAWA ◽  
Tetsuya TAGUCHI ◽  
Yuuu MIYAMOTO ◽  
Terutake HAYASHI ◽  
...  
2013 ◽  
Vol 315 ◽  
pp. 63-67 ◽  
Author(s):  
Muhammad Fahad ◽  
Neil Hopkinson

Rapid prototyping refers to building three dimensional parts in a tool-less, layer by layer manner using the CAD geometry of the part. Additive Manufacturing (AM) is the name given to the application of rapid prototyping technologies to produce functional, end use items. Since AM is relatively new area of manufacturing processes, various processes are being developed and analyzed for their performance (mainly speed and accuracy). This paper deals with the design of a new benchmark part to analyze the flatness of parts produced on High Speed Sintering (HSS) which is a novel Additive Manufacturing process and is currently being developed at Loughborough University. The designed benchmark part comprised of various features such as cubes, holes, cylinders, spheres and cones on a flat base and the build material used for these parts was nylon 12 powder. Flatness and curvature of the base of these parts were measured using a coordinate measuring machine (CMM) and the results are discussed in relation to the operating parameters of the process.The result show changes in the flatness of part with the depth of part in the bed which is attributed to the thermal gradient within the build envelope during build.


2020 ◽  
Vol 10 (6) ◽  
pp. 2030
Author(s):  
Lai Hu ◽  
Yipeng Li ◽  
Jun Zha ◽  
Yaolong Chen

In the global machining industry, ultra-precision/ultra-high-speed machining has become a challenge, and its requirements are getting higher and higher. The challenge of precision grinding lies in the difficulty in ensuring the various dimensions and geometric accuracy of the final machined parts. This paper mainly uses the theory of a multi-body system to propose a “double accuracy” theory of manufacturing and measurement. Firstly, the grinding theory with an accuracy of 0.1 μm and the precision three-coordinate measuring machine theory with an accuracy of 0.3 μm are deduced. Secondly, the two theories are analyzed. Aiming to better explain the practicability of the “double accuracy” theory, a batch of motorized spindle parts is processed by a grinding machine. Then the precision three-coordinate measuring machine is used to measure the shape and position tolerances such as the roundness, the squareness, the flatness, and the coaxiality. The results show that the reached roundness of part A and B is 5 μm and 0.5 μm, the squareness is 3 μm and 4.5 μm, and the coaxiality tolerance is 1.2 μm, respectively.


2006 ◽  
Vol 129 (3) ◽  
pp. 636-643 ◽  
Author(s):  
Bethany A. Woody ◽  
K. Scott Smith ◽  
Robert J. Hocken ◽  
Jimmie A. Miller

High-speed machining (HSM) has had a large impact on the design and fabrication of aerospace parts and HSM techniques have been used to improve the quality of conventionally machined parts as well. Initially, the trend toward HSM of monolithic parts was focused on small parts, where existing machine tools have sufficient precision to machine the required features. But, as the technology continues to progress, the scale of monolithic parts has continued to grow. However, the growth of such parts has become limited by the inability of existing machines to achieve the tolerances required for assembly due to the long-range accuracy and the thermal environment of most machine tools. Increasing part size without decreasing the tolerances using existing technology requires very large and very accurate machines in a tightly controlled thermal environment. As a result, new techniques are needed to precisely and accurately manufacture large scale monolithic components. Previous work has established the fiducial calibration system (FCS), a technique, which, for the first time provides a method that allows for the accuracy of a coordinate measuring machine (CMM) to be transferred to the shop floor. This paper addresses the range of applicability of the FCS, and provides a method to answer two fundamental questions. First, given a set of machines and fiducials, how much improvement in precision of the finished part can be expected? And second, given a desired precision of the finished part, what machines and fiducials are required? The achievable improvement in precision using the FCS depends on a number of factors including, but not limited to: the type of fiducial, the probing system on the machine and CMM, the time required to make a measurement, and the frequency of measurement. In this paper, the sensitivity of the method to such items is evaluated through an uncertainty analysis, and examples are given indicating how this analysis can be used in a variety of cases.


Author(s):  
M Terrier ◽  
M Giménez ◽  
J-Y Hascoët

Ten years ago a new kind of machine tool was presented in Chicago, based on parallel kinematics architectures. Since then, many of these parallel kinematics machines (PKMs) have been developed around the world. Their main interest lies in their high dynamic characteristics, which could help in going faster in high-speed milling. In order to develop high-speed milling on PKM tools and to highlight their potentialities, the French laboratory IRCCyN is now equipped with the VERNE. This PKM tool has been developed by the Spanish company Fatronik. However, the high-speed milling production process is a complex task, in which a great number of parameters influence the final precision of the part and the productivity of the machine. For example, the NC (numerical control) and computer-aided manufacturing (CAM) parameters (feed forward, milling strategies, etc.), the piece geometry, the machine structure, the tool, etc., have a direct consequence on the final part. Hence, a method has been developed in order to check the capability of the machine (either serial or parallel) in milling, which relies on two approaches. The first one is an experimental approach (either using a coordinate measuring machine or acquiring the output axis encoders), while the second one is a simulated approach. After introducing the kinematics of the VERNE, the experimental approach performed so far will be presented.


2011 ◽  
Vol 301-303 ◽  
pp. 617-622
Author(s):  
Z. Y. Yang ◽  
D. H. Liu ◽  
F. Yang ◽  
Z. G. Xie ◽  
Y. Huang

Aim to the low measuring precision of non-cylinder pin hole using the coordinate measuring machine(CMM)and pneumatic measuring instrument, a new solution is proposed which use the high-precision digital lever probe to detect the contours of pin hole with a single clamping situation. The measuring principal of non-cylinder pin hole of piston is introduced and the functions and measuring processes of the measurement system are also presented. The software modules are given and the probe centering error and the parallelism movement error are discussed detailedly. A measuring example is given in the end. The measuring results show that the measurement system has the ability to detect the contours of pin hole with high-precision and efficiently.


2010 ◽  
Vol 447-448 ◽  
pp. 590-594 ◽  
Author(s):  
Ping Yang ◽  
Shusaku Shibata ◽  
Satoru Takahashi ◽  
Kiyoshi Takamasu ◽  
Osamu Sato ◽  
...  

To develop a high precision Micro Coordinate Measuring Machine (Micro-CMM), it is important to evaluate an X-Y stage on the Micro-CMM. A precision multi-probe measurement system has been designed and developed for simultaneously measuring the yaw and straightness errors of the X-Y stage. In the system, an autocollimator measures the yaw error of the stage, and two laser interferometers measure the profile of a standard mirror which is fixed on the X-Y stage. The straightness error is reconstructed by the application of simultaneous equation and least-squares methods, and the uncertainty associated with the multi-probe method is simulated. When the interval of the laser interferometers equals 10 mm, the standard deviation of multi-probe method using the high accuracy autocollimator and the laser interferometers is about 10 nm. The simulation results satisfy our purpose for the uncertainty of 50 nm, and practical considerations are discussed.


Sign in / Sign up

Export Citation Format

Share Document