Precise Fabrication of Wall Structure onto Thin Plate End with Interlayer Temperature Monitoring on Wire and Arc-based Additive Manufacturing

Author(s):  
Takenao TSURUMAKI ◽  
Hiroyuki CHIBAHARA ◽  
Shinji TSUKAMOTO ◽  
Hiroyuki SASAHARA
2019 ◽  
Vol 13 (2) ◽  
pp. JAMDSM0028-JAMDSM0028
Author(s):  
Takenao TSURUMAKI ◽  
Shinji TSUKAMOTO ◽  
Hiroyuki CHIBAHARA ◽  
Hiroyuki SASAHARA

Author(s):  
Ashish Kumar ◽  
Kuntal Maji

This paper presents numerical and experimental investigations on wire arc additive manufacturing for deposition of 430L ferritic stainless steel. Finite element analysis was used to predict temperature distribution for deposition of multiple layers in wire arc additive manufacturing. The transient temperature distribution and predicted by finite element simulation was in good agreement with the experimental results. A wall type structure was fabricated by deposition of multiple layers vertically, and deposited material was characterized by tensile testing and microstructure study. The microstructure of the deposited wall structure was investigated through optical microscopy and scanning electron microscopy (SEM) with EDS. The microstructure of deposited material was changed from fine cellular grains structure to columnar dendrites structure with the formation of secondary arm. It was found that the YS, UTS, and EL of the deposition direction were better than the build direction. The mechanical properties of the WAAM manufactured material was found comparable to that of the wire metal.


2019 ◽  
Vol 2019 ◽  
pp. 1-23 ◽  
Author(s):  
P. Wanjara ◽  
K. Watanabe ◽  
C. de Formanoir ◽  
Q. Yang ◽  
C. Bescond ◽  
...  

Wire feeding can be combined with different heat sources, for example, arc, laser, and electron beam, to enable additive manufacturing and repair of metallic materials. In the case of titanium alloys, the vacuum operational environment of electron beam systems prevents atmospheric contamination during high-temperature processing and ensures high performance and reliability of additively manufactured or repaired components. In the present work, the feasibility of developing a repair process that emulates refurbishing an “extensively eroded” fan blade leading edge using wire-feed electron beam additive manufacturing technology was examined. The integrity of the Ti6Al4V wall structure deposited on a 3 mm thick Ti6Al4V substrate was verified using X-ray microcomputed tomography with a three-dimensional reconstruction. To understand the geometrical distortion in the substrate, three-dimensional displacement mapping with digital image correlation was undertaken after refurbishment and postdeposition stress relief heat treatment. Other characteristics of the repair were examined by assessing the macro- and microstructure, residual stresses, microhardness, tensile and fatigue properties, and static and dynamic failure mechanisms.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4187
Author(s):  
Shalini Singh ◽  
Arackal Narayanan Jinoop ◽  
Gorlea Thrinadh Ananthvenkata Tarun Kumar ◽  
Iyamperumal Anand Palani ◽  
Christ Prakash Paul ◽  
...  

Wire arc additive manufacturing is a metal additive manufacturing technique that allows the fabrication of large size components at a high deposition rate. During wire arc additive manufacturing, multi-layer deposition results in heat accumulation, which raises the preheat temperature of the previously built layer. This causes process instabilities, resulting in deviations from the desired dimensions and variations in material properties. In the present study, a systematic investigation is carried out by varying the interlayer delay from 20 to 80 s during wire arc additive manufacturing deposition of the wall structure. The effect of the interlayer delay on the density, geometry, microstructure and mechanical properties is investigated. An improvement in density, reduction in wall width and wall height and grain refinement are observed with an increase in the interlayer delay. The grain refinement results in an improvement in the micro-hardness and compression strength of the wall structure. In order to understand the effect of interlayer delay on the temperature distribution, numerical simulation is carried out and it is observed that the preheat temperature reduced with an increase in interlayer delay resulting in variation in geometry, microstructure and mechanical properties. The study paves the direction for tailoring the properties of wire arc additive manufacturing-built wall structures by controlling the interlayer delay period.


Author(s):  
N. Y. Jin

Localised plastic deformation in Persistent Slip Bands(PSBs) is a characteristic feature of fatigue in many materials. The dislocation structure in the PSBs contains regularly spaced dislocation dipole walls occupying a volume fraction of around 10%. The remainder of the specimen, the inactive "matrix", contains dislocation veins at a volume fraction of 50% or more. Walls and veins are both separated by regions in which the dislocation density is lower by some orders of magnitude. Since the PSBs offer favorable sites for the initiation of fatigue cracks, the formation of the PSB wall structure is of great interest. Winter has proposed that PSBs form as the result of a transformation of the matrix structure to a regular wall structure, and that the instability occurs among the broad dipoles near the center of a vein rather than in the hard shell surounding the vein as argued by Kulmann-Wilsdorf.


Author(s):  
A. E. Hotchkiss ◽  
A. T. Hotchkiss ◽  
R. P. Apkarian

Multicellular green algae may be an ancestral form of the vascular plants. These algae exhibit cell wall structure, chlorophyll pigmentation, and physiological processes similar to those of higher plants. The presence of a vascular system which provides water, minerals, and nutrients to remote tissues in higher plants was believed unnecessary for the algae. Among the green algae, the Chaetophorales are complex highly branched forms that might require some means of nutrient transport. The Chaetophorales do possess apical meristematic groups of cells that have growth orientations suggestive of stem and root positions. Branches of Chaetophora incressata were examined by the scanning electron microscope (SEM) for ultrastructural evidence of pro-vascular transport.


Sign in / Sign up

Export Citation Format

Share Document