G0700401 Study for Influence of Bio-Diesel Fuel on Performance, Exhaust Emissions and Particle Number (PN) of Diesel Engine

2015 ◽  
Vol 2015 (0) ◽  
pp. _G0700401--_G0700401-
Author(s):  
Kazutoshi MORI ◽  
Jun KAWASE ◽  
Ryuichi SUZUKI ◽  
Koji SORIMACHI ◽  
Kunihisa EGUCHI
Author(s):  
Seppo A. Niemi ◽  
Juha M. Tyrva¨inen ◽  
Mika J. Laure´n ◽  
Va¨ino¨ O. K. Laiho

In the near future, crude oil based fuels must little by little be replaced by biofuels both in the region of the European Union (EU) and in the United States. Bearing this in mind, a Finnish-made off-road diesel engine was tested with a biofuel-diesel fuel blend in the Internal Combustion Engine (ICE) Laboratory of Turku Polytechnic, Finland. The biofuel was cold-pressed mustard seed oil (MSO). The engine operation, performance and exhaust emissions were investigated using a blend of 30 mass-% MSO and 70 mass-% diesel fuel oil (DFO). The injection timing of the engine was retarded considerably in order to reduce NOx emissions drastically. The main target was then to find out, whether the blended oxygen containing MSO would speed up the combustion so that the particulate matter (PM) emissions would remain unchanged or even decrease despite the injection retardation. As secondary tasks of the study, the NOx readings of the CLD and FTIR analyzers were compared, and exhaust contents of unregulated compounds were determined. Retarding the injection timing resulted in a significant decrease of NOx emissions, but in an increase in smoke, as expected. At retarded timing, the NOx emissions remained almost unchanged, but the amount of smoke decreased when the engine was run with the fuel blend instead of DFO. At retarded timing at rated speed, the number of ultra-fine particles decreased, but the amount of large particles increased with DFO at full load. At 10% load, however, the particle number increased in the entire particle size range due to retardation. At both loads, the use of the fuel blend slightly reduced larger particles, whereas the number of small particles somewhat increased. At full load at an intermediate speed of 1500 rpm, the PM results were very similar to those obtained at rated speed. At 10% load with DFO, however, the injection retardation led to a higher number of larger particles, the smaller particles being at almost an unchanged level. With the fuel blend, the particle number was now higher within almost the whole particle diameter range than with DFO. Considerably higher NO2 contents were usually detected with FTIR than with CLD. The shape of the NOx result curves were rather similar independent of which one of the analyzers was used for measurements. The NOx contents were, however, generally some ten ppms higher with FTIR. The exhaust contents of unregulated compounds were usually low.


Transport ◽  
2014 ◽  
Vol 29 (4) ◽  
pp. 440-448 ◽  
Author(s):  
Tomas Mickevičius ◽  
Stasys Slavinskas ◽  
Slawomir Wierzbicki ◽  
Kamil Duda

This paper presents a comparative analysis of the diesel engine performance and emission characteristics, when operating on diesel fuel and various diesel-biodiesel (B10, B20, B40, B60) blends, at various loads and engine speeds. The experimental tests were performed on a four-stroke, four-cylinder, direct injection, naturally aspirated, 60 kW diesel engine D-243. The in-cylinder pressure data was analysed to determine the ignition delay, the Heat Release Rate (HRR), maximum in-cylinder pressure and maximum pressure gradients. The influence of diesel-biodiesel blends on the Brake Specific Fuel Consumption (bsfc) and exhaust emissions was also investigated. The bench test results showed that when the engine running on blends B60 at full engine load and rated speed, the autoignition delay was 13.5% longer, in comparison with mineral diesel. Maximum cylinder pressure decreased about 1–2% when the amount of Rapeseed Methyl Ester (RME) expanded in the diesel fuel when operating at full load and 1400 min–1 speed. At rated mode, the minimum bsfc increased, when operating on biofuel blends compared to mineral diesel. The maximum brake thermal efficiency sustained at the levels from 0.3% to 6.5% lower in comparison with mineral diesel operating at full (100%) load. When the engine was running at maximum torque mode using diesel – RME fuel blends B10, B20, B40 and B60 the total emissions of nitrogen oxides decreased. At full and moderate load, the emission of carbon monoxide significantly raised as the amount of RME in fuel increased.


2015 ◽  
Vol 49 (12) ◽  
pp. 7473-7482 ◽  
Author(s):  
Adam Prokopowicz ◽  
Marzena Zaciera ◽  
Andrzej Sobczak ◽  
Piotr Bielaczyc ◽  
Joseph Woodburn

2012 ◽  
Vol 518-523 ◽  
pp. 3263-3266
Author(s):  
Jazair Yahya Wira ◽  
Tan Wee Choon ◽  
Samion Syahrullail ◽  
Noge Hirofumi ◽  
Mazlan Said ◽  
...  

Production of alternative diesel fuel has been increasing drastically in many Asian countries. Since the reduction of petroleum production by Organization of Petroleum Exporting Countries (OPEC), the research on alternative fuel for diesel engine has gain interest. The target of this project is to substitute some percentage usage of conventional diesel fuel with waste substance without compromising on engine performance and exhaust emissions. This study has produced two type of alternative fuels. A test fuel consisting 30% of water into diesel fuel with the existence of additive or emulsifier (span 80) is called as DW Emul. Another test fuel which is named as DHW Emul produced by blending 30% of water into a mixture consisting of 20% of waste hydraulic oil and 80% of diesel fuel with the existence of span 80. The engine performance and exhaust emissions of DW Emul and DHW Emul are measured and has been compared with the conventional diesel fuel. A 600cc single cylinder direct injection diesel engine was used. The experiment was conducted at 1500 rpm with variable engine loads. Results show that DHW Emul and DW Emul has higher brake specific fuel consumption (BSFC). However, by considering the total use of diesel fuel contained in DW Emul, the quantity was lower at all loads. The same goes for DHW Emul at low load but deteriorate at high load which show slightly higher compared with of using 100% conventional diesel fuel. DHW Emul has suppressed CO emission that is usually high of using emulsion fuel to the level similar to conventional diesel fuel. NOx and Smoke emissions for DHW Emul are lower than conventional diesel. The use of DHW Emul can give significant reduction of NOx and Smoke emissions without deterioration of CO emission.


Energy has become a crucial factor for humanity to continue the economic growth and maintain high standard of living especially after industrial revolution. “Fossil fuels are still the main source of energy. But the endless consumption of fossil fuels will bring the reserve to an end in near future. As a result fuel prices are soaring because of diminishing supply than demand. So researchers world over are in constant search of alternate fuels in the last three to four years, aimed at reducing CO2 emissions and global dependency on fossil fuels. The use of vegetable oils as a fuel in diesel engine causes some problems due to their high viscosity compared with conventional diesel fuel. Various techniques and methods are used to solve the problems resulting from high viscosity. One of these techniques is blending of fuel. In this study, a mix of 5%, 10%,15%, 20%, 25% sesame oil and diesel fuel was used as alternative fuel in a direct injection diesel engine. Diesel engine performance and exhaust emissions were investigated and compared with the diesel fuel in a diesel engine. The experimental results show that the engine power and torque of the mixture of sesame oil diesel fuel are close to the values obtained from diesel fuel and the amount of exhaust emissions are lower than those of diesel fuel. Hence it is seen that mix of sesame oil 20% and 80% diesel fuel can be used as an alternative fuel successfully in a diesel engine without any modification and also it is an environmental friendly” fuel in terms of emission parameters.


Author(s):  
Bobbili Prasadarao ◽  
Aditya Kolakoti ◽  
Pudi Sekhar

: This paper presents the production of biodiesel from three different non edible oils of Pongamia, Mahua and Jatropha as an alternative fuel for diesel engine. Biodiesel is produced by followed transesterification process, using catalyst sodium hydroxide (NaOH) and methyl alcohol (CH3OH). A single cylinder four stroke three-wheeler auto diesel engine is used to evaluate the exhaust emission characteristics at a constant speed of 1500rpm with varying loads. Diesel as a reference fuel and cent percent of Pongamia Methyl Ester (PME), Mahua Methyl Ester (MME) and Jatropha Methyl Ester (JME) are used as an alternative fuel. The physicochemical properties of biodiesels are within the limits of international standards (ASTM D6751) noticeably. The results of tested biodiesels offer low exhaust emissions compared to diesel fuel, owing to presence of molecular oxygen and high cetane number. At maximum load the NOx emission reduced by 18.41% for JME, 17.46% for MME and 7.61% for PME. Low levels of CO emissions are recorded for JME (66%) followed by MME (33%) and PME (22%). Unburnt hydrocarbon emissions were reduced by 85.75% for JME and MME, for PME 14.28% reduction is observed. Exhaust smoke emissions are also reduced for PME and MME by 18.84%, for JME 14.49%. As a conclusion, it is observed that all the methyl esters exhibit significant reduction in harmful exhaust emissions compared to diesel fuel and JME is noted as a better choice.


2017 ◽  
Vol 140 (1) ◽  
Author(s):  
Zhengxi Guo ◽  
Hejun Guo ◽  
Qingping Zeng

Utilization of oxygenated fuels has proven to be able to significantly control diesel engine exhaust emissions. Presented in this paper is a new oxygenated fuel di-(2-methoxypropyl) carbonate (DMPC), which was produced through transesterification reaction using dimethyl carbonate (DMC) and propylene glycol monomethyl ether (PGMME) as reactants as well as potassium hydroxide (KOH) as catalyst. Its structure characterization was completed through analyses with Fourier transform infrared (FT-IR), 1H nuclear magnetic resonance (NMR), and GC-MS analytical techniques. Further study was made about the effect of the oxygenate addition to diesel fuel on chemicophysical properties, combustion performances, and exhaust emissions characteristics. Experimental results displayed that the oxygenated fuel is mutually soluble with diesel fuel in any proportion at ambient temperature around 25 °C. With DMPC introduced to diesel fuel, kinematic viscosity decreases linearly, smoke point increases linearly, and flash point declines remarkably even under low content 5 vol %. Results of combustion test carried out on a single cylinder, DI diesel engine running at 1600 rpm and 2000 rpm showed that CO can be reduced by up to 60.0%, smoke can be lessened by up to 90.2%, while NOx increases by 4.4–14.0% as 15 vol % and 25 vol % of the oxygenate was added to a diesel fuel. Engine in-cylinder peak pressure increases somewhat and ignition delay duration becomes a little shorter. Both engine in-cylinder pressure rising rate and heat release rate increase noticeably during the premixed combustion.


Sign in / Sign up

Export Citation Format

Share Document