Flow characteristics near a rotating disk in surfactant solution

2000 ◽  
Vol 2000.4 (0) ◽  
pp. 167-168
Author(s):  
Satoshi OGATA ◽  
Keizo WATANABE
1968 ◽  
Vol 90 (2) ◽  
pp. 395-404 ◽  
Author(s):  
H. N. Ketola ◽  
J. M. McGrew

A theory of the partially wetted rotating disk is described and experimental data presented which verify the application of this theory in practical applications. Four different flow regimes may be identified according to the value of the disk Reynolds number and the spacing ratio between the disk and stationary wall. The analytical expressions for prediction of the pressure gradient developed and the frictional resistance are uniquely determined by the disk Reynolds number, spacing ratio, and the degree of wetting of the disk.


1974 ◽  
Vol 41 (1) ◽  
pp. 45-50 ◽  
Author(s):  
E. Bilgen ◽  
P. Vasseur

The turbulent flow characteristics of non-Newtonian dilute polymer solutions around an enclosed rotating disk have been studied both theoretically and experimentally. In the theoretical analysis, the momentum equations of the boundary layers on both rotating disk and housing have been solved numerically using appropriate velocity profiles. It is shown that the theoretical predictions for minimum resistance conditions are in good agreement with the experimental results of this study and with those in the literature.


Author(s):  
Achinie Warusevitane ◽  
Kathy Johnson ◽  
Stephen Ambrose ◽  
Mike Walsh ◽  
Colin Young

Abstract Civil aero-engines contain two or three shafts that are supported by bearings. Seals are required both between pairs of rotating shafts and between static elements and shafts. Seals located between two co/contra rotating shafts within the bearing chamber are known as intershaft seals and are typically classified as either hydraulic or oil backed. This paper focuses on research relevant to intershaft hydraulic seals. A hydraulic seal is formed by a seal fin on the inner shaft immersed in an annulus of oil in the outer shaft where the oil in the annulus is centrifuged outwards by the radial pressure gradient. Once formed a hydraulic seal does not allow air to flow across the seal and any pressure difference across the seal creates different oil levels either side of the fin. Despite their reliable operation with zero leakage, the application of hydraulic seals is restricted due to temperature limitations, oil degradation and coking. Research and development of the next generation of hydraulic seals needs to focus on addressing these issues so that the seals can be utilized in hotter zones in future engines. Understanding of the detailed fluid dynamic behaviour during hydraulic seal operation is relatively limited with very little published data. There is an acknowledged need for improved knowledge and this is the context for the current study. The ability to accurately computationally model hydraulic seals is highly desirable. Prior experimental and analytical investigations into fully and partially wetted rotating disks have been used to aid understanding of the performance and flow characteristics of hydraulic seals as there are many geometric and operational similarities. These fundamental experimental investigations in the literature provide validation data that allows the authors to establish a CFD modelling methodology. This paper initially compares the flow characteristics of a fully wetted rotating disk against experimental results available in literature including the radial and tangential velocity components. This paper subsequently investigates the flow characteristics of a partially wetted disk by examining the effect on the angular velocity of the fluid core with varying engagement and spacing ratios for two flow regimes.


2000 ◽  
Author(s):  
Satoshi Ogata ◽  
Keizo Watanabe

Abstract Recently, considerable interest has developed in surfactant additives for use in district heating and cooling systems to lower the pumping energy requirement. Many studies in the case of surfactant solutions have been done for the flow behavior in a circular pipe. However, few studies have been conducted on flow near a rotating disk in surfactant solutions. In this paper, the flow characteristics near an enclosed rotating disk in surfactant solutions were studied by applying flow visualization techniques and analyzed by applying the momentum integral equations which are related to the three boundary layer problem. The test surfactant solution was Ethoquad 0/12 with sodium salicylate at a concentration of 200ppm and a temperature of 18°C. The flow patterns were obtained at Re = 2.5×105 and 3.5×105 so that the Reynolds number range corresponds with the transition region to turbulent flow in the boundary layer on the rotating disk for Newtonian fluids. Consequently, it has been clarified that the amplitude of the circular vortex on the rotating disk was reduced and the flow direction near the disk was turned outward to the circumferential direction comparing with that of tap water. In additional, the limiting maximum drag reduction asymptote for a moment coefficient of a rotating disk was obtained by applying the momentum integral equation for drag-reducing solutions based on previous papers on circular pipe flow.


2017 ◽  
Vol 48 (14) ◽  
pp. 1263-1280 ◽  
Author(s):  
Shuxian Chen ◽  
Jingzhou Zhang ◽  
Xiaoming Tan ◽  
Feng Yan

2006 ◽  
Vol 2006.44 (0) ◽  
pp. 119-120
Author(s):  
Taisuke Sasa ◽  
Hiromasa Yamane ◽  
Hideki Hibara ◽  
Yukiharu Iwamoto ◽  
Motosuke Sogo

2003 ◽  
Vol 2003 (0) ◽  
pp. 173
Author(s):  
Mitsunori YOSHIDA ◽  
Motoyuki ITOH ◽  
Shinzi TAMANO ◽  
Kazuhiko YOKOTA

2007 ◽  
Vol 2007.2 (0) ◽  
pp. 9-10
Author(s):  
Yukiharu IWAMOTO ◽  
Hideki HIBARA ◽  
Motosuke SOGO ◽  
Koichi MURAKAMI ◽  
Hiromasa YAMANE ◽  
...  

2008 ◽  
Vol 130 (8) ◽  
Author(s):  
Shinji Tamano ◽  
Motoyuki Itoh ◽  
Mitsunori Yoshida ◽  
Kazuhiko Yokota

In this study, confined swirling flows of an aqueous surfactant solution due to a rotating disk in a cylindrical casing were investigated using a sectional flow visualization technique and a two-component laser Doppler velocimetry system. The concentrations of aqueous surfactant solutions (C14TASal) are 0.4wt%, 0.8wt%, and 1.2wt%. Rheological properties such as shear viscosity and first normal stress difference of the surfactant solution were measured with a rheometer. The patterns of secondary flow were classified using the Reynolds and elasticity numbers. We revealed that the projection formed near the center of the rotating disk moved up and down at a constant frequency for C14TASal0.8wt% and 1.2wt%, which has not been reported as far as we know. The effects of the Reynolds number, elasticity number, and aspect ratio on the velocity profiles were clarified. It was also found that the region of rigid body rotation existed at the higher Reynolds number tested for C14TASal0.4wt%.


Sign in / Sign up

Export Citation Format

Share Document