Precision Machining of Harden Stainless Steel with Micro Milling Tool

2004 ◽  
Vol 2004.5 (0) ◽  
pp. 35-36
Author(s):  
Hirofumi SUZUKI ◽  
Takeshi KIMURA ◽  
Tadashi OKINO ◽  
Yoshio HIJIKATA ◽  
Toshimichi MORIWAKI ◽  
...  
Author(s):  
Xiaohong Lu ◽  
Haixing Zhang ◽  
Zhenyuan Jia ◽  
Yixuan Feng ◽  
Steven Y. Liang

Micro-milling tool breakage has become a bottleneck for the development of micro-milling technology. A new method to predict micro-milling tool breakage based on theoretical model is presented in this paper. Based on the previously built micro-milling force model, the bending stress of the micro-milling cutter caused by the distributed load along the spiral cutting edge is calculated; Then, the ultimate stress of carbide micro-milling tool is obtained by experiments; Finally, the bending stress at the dangerous part of the micro-milling tool is compared with the ultimate stress. Tool breakage curves are drawn with feed per tooth and axial cutting depth as horizontal and vertical axes respectively. The area above the curve is the tool breakage zone, and the area below the curve is the safety zone. The research provides a new method for the prediction of micro-milling tool breakage, and therefore guides the cutting parameters selection in micro-milling.


ACTA IMEKO ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 125
Author(s):  
Zsolt János Viharos ◽  
László Móricz ◽  
Máté István Büki

The 21st century manufacturing technology is unimagined without the various CAM (Computer Aided Manufacturing) toolpath generation programs. The aims of developing the toolpath strategies which are offered by the cutting control software is to ensure the longest possible tool lifetime and high efficiency of the cutting method. In this paper, the goal is to compare the efficiency of the 3 types of tool path strategies in the very special field of micro-milling of ceramic materials. The dimensional distortion of the manufactured geometries served to draw the Taylor curve for describing the wearing progress of the cutting tool helping to determine the worn-in, normal and wear out stages. These isolations allow to separate the connected high-frequency vibration measurements as well. Applying the novel feature selection technique of the authors, the basis for the vibration based micro-milling tool condition monitoring for ceramics cutting is presented for different toolpath strategies. It resulted in the identification of the most relevant vibration signal features and the presentation of the identified and automatically separated tool wearing stages as well.


2020 ◽  
Vol 3 (4) ◽  
pp. 260-268
Author(s):  
Kui Liu ◽  
Hu Wu ◽  
Rui Huang ◽  
Nicholas Yew Jin Tan

2016 ◽  
Vol 693 ◽  
pp. 906-913
Author(s):  
Kai Tao Xu ◽  
Bin Zou ◽  
Chuan Zhen Huang ◽  
Hui Jun Zhou ◽  
Han Lian Liu ◽  
...  

Micro milling is most flexible to create 3D features for application. However, how to design and fabrication of high precision micro milling tools are one of big challenges for mechanical micro milling. Commercially available micro milling tools are usually simply made from downsizing of macro milling tools, which have negative impact on milling performance. Therefore, in this paper, firstly, various structural of micro milling tools were optimized with abaqus that investigated stress and strain under certain static load on the cutting edges. Then, results showed the minimum stress and strain was a micro hexagonal end mill. Finally, a Ti (C7N3) cermet micro hexagonal end mill with a radius of 0.5mm was fabricated by wire electrical discharge machining, and the evaluation experiments for the hexagonal mill have been processed on a micro milling centre.


Author(s):  
Xiaohong Lu ◽  
Zhenyuan Jia ◽  
Shengqian Liu ◽  
Kun Yang ◽  
Yixuan Feng ◽  
...  

Abstract In the micro-milling process, the minimization of tool chatter is critical for good surface finish quality. The analysis of chatter requires an understanding of the milling tool as well as the dynamics of milling system structure. Frequency response function (FRF) at the micro-milling tool point reflects dynamic behavior of the whole micro-milling machine–spindle–tool system. However, the tool point FRF of micro-milling cannot be obtained directly through the hammering test. To solve the problem, the authors get the FRF of the spindle system based on the rotating Timoshenko beam theory and the receptance coupling substructure analysis (RCSA), and the bearing characteristics are added into the spindle model through structural modification. Then, the centrifugal force and gyroscopic effect caused by the high-speed rotation of the micro-milling spindle are considered to better simulate the real scenario and increase the accuracy of modal parameters. The method has general usage and can be applied to all the micro-milling tools under which only the spindle dimension, bearing characteristics, and contact parameters need to be changed.


Author(s):  
Yuan Meixia ◽  
Liu Shaonan ◽  
Xue Hongxin ◽  
Tang Boyan ◽  
Zhao Linlin

2011 ◽  
Vol 5 (3) ◽  
pp. 277-282 ◽  
Author(s):  
Hirofumi Suzuki ◽  
◽  
Tatsuya Furuki ◽  
Mutsumi Okada ◽  
Katsuji Fujii ◽  
...  

Micro milling tools made of PolyCrystalline Diamond (PCD) have been developed to machine ceramic micro dies and molds. Cutting edges are ground with diamond wheels. PCD milling tool wear is evaluated by cutting binder-less tungsten carbide spherical molds and machining structured surfaces for trial. Results of experiments clarified that PCD milling tool life is over 10 times that of resinoid diamond grinding wheels, and that form accuracy was 0.1 µm-0.3 µm P-V and surface roughness was 10 nm Rz.


Sign in / Sign up

Export Citation Format

Share Document