Study on Micro Milling Tool with Hot-Pressed Sintered Ti(C7N3)-Based Cermet

2016 ◽  
Vol 693 ◽  
pp. 906-913
Author(s):  
Kai Tao Xu ◽  
Bin Zou ◽  
Chuan Zhen Huang ◽  
Hui Jun Zhou ◽  
Han Lian Liu ◽  
...  

Micro milling is most flexible to create 3D features for application. However, how to design and fabrication of high precision micro milling tools are one of big challenges for mechanical micro milling. Commercially available micro milling tools are usually simply made from downsizing of macro milling tools, which have negative impact on milling performance. Therefore, in this paper, firstly, various structural of micro milling tools were optimized with abaqus that investigated stress and strain under certain static load on the cutting edges. Then, results showed the minimum stress and strain was a micro hexagonal end mill. Finally, a Ti (C7N3) cermet micro hexagonal end mill with a radius of 0.5mm was fabricated by wire electrical discharge machining, and the evaluation experiments for the hexagonal mill have been processed on a micro milling centre.

2011 ◽  
Vol 5 (3) ◽  
pp. 277-282 ◽  
Author(s):  
Hirofumi Suzuki ◽  
◽  
Tatsuya Furuki ◽  
Mutsumi Okada ◽  
Katsuji Fujii ◽  
...  

Micro milling tools made of PolyCrystalline Diamond (PCD) have been developed to machine ceramic micro dies and molds. Cutting edges are ground with diamond wheels. PCD milling tool wear is evaluated by cutting binder-less tungsten carbide spherical molds and machining structured surfaces for trial. Results of experiments clarified that PCD milling tool life is over 10 times that of resinoid diamond grinding wheels, and that form accuracy was 0.1 µm-0.3 µm P-V and surface roughness was 10 nm Rz.


2015 ◽  
Vol 9 (1) ◽  
pp. 26-32 ◽  
Author(s):  
Hirofumi Suzuki ◽  
◽  
Mutsumi Okada ◽  
Koichi Okada ◽  
Yosuke Ito ◽  
...  

Micro milling tools made of Single Crystalline Diamond (SCD) have been developed to machine micro dies and molds made of ceramics. The milling tools of a cylindrical SCD having many sharp cutting edges are fabricated 3-dimensionally by scanning a laser beam. Flat shape of binder-less tungsten carbide mold was cut with the developed milling tool to evaluate the tool wears and its life. Some micro aspheric molds of tungsten carbide were cut with the milling tool at a rotational speed of 50,000 min-1. The ceramic molds were cut in the ductile mode. By cutting with the milling tool, the form accuracy obtained was about 100 nm P–V and the surface roughness 8 nm Rz.


2020 ◽  
Vol 110 (11-12) ◽  
pp. 790-795
Author(s):  
Eckhart Uhlmann ◽  
Julian Polte ◽  
Christoph Hein ◽  
Christian Jahnke ◽  
Mitchel Polte ◽  
...  

Mittels Fräsen gefertigte Formelektroden aus Feinkorngraphit sind für die Funkenerosion essentiell. Die spezifischen Werkstoffeigenschaften des Graphits resultieren in einer hervorragenden Zerspanbarkeit mit hohen Zeitspanvolumina QW und einer effizienten Anwendung in der Funkenerosion. Allerdings sind die Standzeiten TSt der Fräswerkzeuge durch einen ausgeprägten Werkzeugverschleiß stark limitiert. Die Verringerung des Werkzeugverschleißes stellt somit ein Potenzial für weitere Effizienzsteigerungen dar. Eine Perspektive bietet der Einsatz vollkeramischer Fräswerkzeuge. Milled graphite electrodes are essential for electrical discharge machining processes. The properties of the graphite allow high material removal rates QW and an effective application in electrical discharge machining. The life time TSt of the milling tools is limited by an extended wear at the same time. For this purpose, monolithic ceramic end milling tools are a promising new approach.


Micromachines ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1058
Author(s):  
Yi Xia ◽  
Ning He ◽  
Liang Li ◽  
Guolong Zhao

Because of the many advantages of high-precision micromachining, picosecond pulsed lasers (PSPLs) can be used to process chemical-vapor-deposited diamonds (CVD-D). With the appropriate PSPL manufacturing technique, sharp and smooth edges of CVD-D micro tools can be generated. In this study, a PSPL is used to cut CVD-D. To optimize PSPL cutting, the effects of its parameters including fluence, pulse pitch, and wavelength on the cutting results were investigated. The results showed that the wavelength had the greatest impact on the sharpness of CVD-D. With PSPL cutting, sharp cutting edges, and smooth fabricated surfaces of the CVD-D, micro tools were achieved. Finally, the fabrication of CVD-D micro milling tools and micro milling experiments were also demonstrated.


Author(s):  
Xiaohong Lu ◽  
Haixing Zhang ◽  
Zhenyuan Jia ◽  
Yixuan Feng ◽  
Steven Y. Liang

Micro-milling tool breakage has become a bottleneck for the development of micro-milling technology. A new method to predict micro-milling tool breakage based on theoretical model is presented in this paper. Based on the previously built micro-milling force model, the bending stress of the micro-milling cutter caused by the distributed load along the spiral cutting edge is calculated; Then, the ultimate stress of carbide micro-milling tool is obtained by experiments; Finally, the bending stress at the dangerous part of the micro-milling tool is compared with the ultimate stress. Tool breakage curves are drawn with feed per tooth and axial cutting depth as horizontal and vertical axes respectively. The area above the curve is the tool breakage zone, and the area below the curve is the safety zone. The research provides a new method for the prediction of micro-milling tool breakage, and therefore guides the cutting parameters selection in micro-milling.


2015 ◽  
Vol 105 (11-12) ◽  
pp. 805-811
Author(s):  
E. Uhlmann ◽  
D. Oberschmidt ◽  
A. Löwenstein ◽  
M. Polte ◽  
I. Winker

Die Prozesssicherheit beim Mikrofräsen lässt sich mit einer gezielten Schneidkantenverrundung erheblich steigern. Dabei werden durch verschiedene Präparationstechnologien unterschiedliche Geometrien und Einflüsse auf den Fräsprozess erzeugt. Der Fachbeitrag behandelt den Einsatz präparierter Mikrowerkzeuge in Zerspanversuchen, in denen auf die Zerspankräfte, den Verschleiß sowie die Oberflächengüten eingegangen wird.   Process reliability in micro milling can be increased by a defined cutting edge preparation. Different cutting edge preparations cause different effects on tool behavior in the downstream micro milling process. In this paper, the process forces, the tool wear and the surface quality of prepared micro milling tools are characterized in cutting tests.


Micromachines ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 568 ◽  
Author(s):  
Zhiqiang Liang ◽  
Peng Gao ◽  
Xibin Wang ◽  
Shidi Li ◽  
Tianfeng Zhou ◽  
...  

Tool wear is a significant issue for the application of micro end mills. This can be significantly improved by coating materials on tool surfaces. This paper investigates the effects of different coating materials on tool wear in the micro milling of Ti-6Al-4V. A series of cutting experiments were conducted. The tool wear and workpiece surface morphology were investigated by analyzing the wear of the end flank surface and the total cutting edge. It was found that, without coating, serious tool wear and breakage occurred easily during milling. However, AlTiN-based and AlCrN-based coatings could highly reduce cutting edge chipping and flank wear. Specifically, The AlCrN-based coated mill presented less fracture resistance. For TiN coated micro end mill, only slight cutting edge chipping occurred. Compared with other types of tools, the AlTiN-based coated micro end mill could maximize tool life, bringing about an integrated cutting edges with the smallest surface roughness. In short, the AlTiN-based coating material is recommended for the micro end mill in the machining of Ti-6Al-4V.


ACTA IMEKO ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 125
Author(s):  
Zsolt János Viharos ◽  
László Móricz ◽  
Máté István Büki

The 21st century manufacturing technology is unimagined without the various CAM (Computer Aided Manufacturing) toolpath generation programs. The aims of developing the toolpath strategies which are offered by the cutting control software is to ensure the longest possible tool lifetime and high efficiency of the cutting method. In this paper, the goal is to compare the efficiency of the 3 types of tool path strategies in the very special field of micro-milling of ceramic materials. The dimensional distortion of the manufactured geometries served to draw the Taylor curve for describing the wearing progress of the cutting tool helping to determine the worn-in, normal and wear out stages. These isolations allow to separate the connected high-frequency vibration measurements as well. Applying the novel feature selection technique of the authors, the basis for the vibration based micro-milling tool condition monitoring for ceramics cutting is presented for different toolpath strategies. It resulted in the identification of the most relevant vibration signal features and the presentation of the identified and automatically separated tool wearing stages as well.


2021 ◽  
pp. 46-51
Author(s):  
V. YA. ZHARNITSKIY ◽  
◽  
A. P. SMIRNOV

Identified in the process of analyzing the operation of the structure, in the conditions of its operation, allow to assess the actual reserves of the bearing capacity of the structure and take effective measures to restore the operational parameters. The main criteria influencing the choice of mathematical models of materials for structures and elements of soil dams are more consistent with the model of the equation of state connecting the components of stress and strain tensors, as well as the rate of their change, which are obtained and tested for numerical calculations and have a full set of constants for materials used in the calculations of earth dams, the choice of their structures (concrete,reinforced concrete, soils, etc.). Reliable operation of soil dams is possible only if all proper conditions are met. The causes of dam accidents and their damage must be known not only to eliminate errors at the design and construction stages, but also during their operation. In order to exclude the negative impact of operational factors on the safety of soil HTS, it is necessary not only to strictly observe the rules of technical operation and take measures to exclude the possibility of an emergency situation during technological operations at facilities, but also to have methods for predictive justification of the restoration of strength and operational indicators of structures and elements of soil dams.


Sign in / Sign up

Export Citation Format

Share Document