410 Elastic-plastic three-dimensional FE analysis for rolling using co-rotational formulation

2001 ◽  
Vol 2001.9 (0) ◽  
pp. 157-158
Author(s):  
Jun YANAGIMOTO ◽  
Takuya HIGUCHI
2005 ◽  
Vol 33 (4) ◽  
pp. 210-226 ◽  
Author(s):  
I. L. Al-Qadi ◽  
M. A. Elseifi ◽  
P. J. Yoo ◽  
I. Janajreh

Abstract The objective of this study was to quantify pavement damage due to a conventional (385/65R22.5) and a new generation of wide-base (445/50R22.5) tires using three-dimensional (3D) finite element (FE) analysis. The investigated new generation of wide-base tires has wider treads and greater load-carrying capacity than the conventional wide-base tire. In addition, the contact patch is less sensitive to loading and is especially designed to operate at 690kPa inflation pressure at 121km/hr speed for full load of 151kN tandem axle. The developed FE models simulated the tread sizes and applicable contact pressure for each tread and utilized laboratory-measured pavement material properties. In addition, the models were calibrated and properly validated using field-measured stresses and strains. Comparison was established between the two wide-base tire types and the dual-tire assembly. Results indicated that the 445/50R22.5 wide-base tire would cause more fatigue damage, approximately the same rutting damage and less surface-initiated top-down cracking than the conventional dual-tire assembly. On the other hand, the conventional 385/65R22.5 wide-base tire, which was introduced more than two decades ago, caused the most damage.


Author(s):  
A. Sepehri ◽  
K. Farhang

Three dimensional elastic-plastic contact of two nominally flat rough surfaces is by developing the equations governing the shoulder-shoulder contact of asperities based on the Chang, Etsion and Bogy (CEB) model of contact in which volume conservation is assumed in the plastic flow regime. Shoulder-shoulder asperity contact yields a slanted contact force consisting of both tangential (parallel to mean plane) and normal components. Each force component comprises elastic and elastic-plastic parts. Statistical summation of normal force components leads to the derivation of the normal contact force for the elastic-plastic contact akin to the CEB model. Half-plane tangential force due to elastic-plastic contact is derived through the statistical summation of tangential force component along an arbitrary tangential direction.


2007 ◽  
Vol 129 (4) ◽  
pp. 761-771 ◽  
Author(s):  
Daniel Nélias ◽  
Eduard Antaluca ◽  
Vincent Boucly ◽  
Spiridon Cretu

A three-dimensional numerical model based on a semianalytical method in the framework of small strains and small displacements is presented for solving an elastic-plastic contact with surface traction. A Coulomb’s law is assumed for the friction, as commonly used for sliding contacts. The effects of the contact pressure distribution and residual strain on the geometry of the contacting surfaces are derived from Betti’s reciprocal theorem with initial strain. The main advantage of this approach over the classical finite element method (FEM) is the computing time, which is reduced by several orders of magnitude. The contact problem, which is one of the most time-consuming procedures in the elastic-plastic algorithm, is obtained using a method based on the variational principle and accelerated by means of the discrete convolution fast Fourier transform (FFT) and conjugate gradient methods. The FFT technique is also involved in the calculation of internal strains and stresses. A return-mapping algorithm with an elastic predictor∕plastic corrector scheme and a von Mises criterion is used in the plasticity loop. The model is first validated by comparison with results obtained by the FEM. The effect of the friction coefficient on the contact pressure distribution, subsurface stress field, and residual strains is also presented and discussed.


Author(s):  
Kiminobu Hojo ◽  
Daigo Watanabe ◽  
Shinichi Kawabata ◽  
Yasufumi Ametani

A lot of applications of elastic plastic FE analysis to flawed structural fracture behaviors of mode I have been investigated. On the other hand the analysis method has not been established for the case of the excessive cyclic torsion loading with mode II or III fracture. The authors tried simulating the fracture behavior of a cylinder-shaped specimen with a through-walled circumferential flaw subjected to excessive monotonic or cyclic loading by using elastic plastic FE analysis. Chaboche constitutive equation of the used FE code Abaqus was applied to estimate the elastic plastic cyclic behavior. As a result in the case of monotonic loading without crack extension, the relation of torque-rotation angle of the experiment was estimated well by the simulation. Also J-integral by the Abaqus’ function agreed with a simplified J-equation using the calculated torque-rotation angle relation. On the other hand under load controlled cyclic loading associated with ductile crack growth, the calculated torque-rotation angle relation did not agree with the experimental one because of high sensitivity of the used stress-strain curve. J-integral from Abaqus code did not increase regardless of the accumulated crack growth and plastic zone. Several simplified ΔJ calculations tried to explain the experimental ductile crack growth and it seemed that da/dN-ΔJ relation follows the Paris’ law. From these examinations an estimation procedure of the structures under excessive cyclic loading was proposed.


2002 ◽  
Vol 125 (1) ◽  
pp. 52-59 ◽  
Author(s):  
N. Ye ◽  
K. Komvopoulos

The simultaneous effects of mechanical and thermal surface loadings on the deformation of layered media were analyzed with the finite element method. A three-dimensional model of an elastic sphere sliding over an elastic-plastic layered medium was developed and validated by comparing finite element results with analytical and numerical solutions for the stresses and temperature distribution at the surface of an elastic homogeneous half-space. The evolution of deformation in the layered medium due to thermomechanical surface loading is interpreted in light of the dependence of temperature, von Mises equivalent stress, first principal stress, and equivalent plastic strain on the layer thickness, Peclet number, and sliding distance. The propensity for plastic flow and microcracking in the layered medium is discussed in terms of the thickness and thermal properties of the layer, sliding speed, medium compliance, and normal load. It is shown that frictional shear traction and thermal loading promote stress intensification and plasticity, especially in the case of relatively thin layers exhibiting low thermal conductivity.


Sign in / Sign up

Export Citation Format

Share Document