scholarly journals A Three-Dimensional Semianalytical Model for Elastic-Plastic Sliding Contacts

2007 ◽  
Vol 129 (4) ◽  
pp. 761-771 ◽  
Author(s):  
Daniel Nélias ◽  
Eduard Antaluca ◽  
Vincent Boucly ◽  
Spiridon Cretu

A three-dimensional numerical model based on a semianalytical method in the framework of small strains and small displacements is presented for solving an elastic-plastic contact with surface traction. A Coulomb’s law is assumed for the friction, as commonly used for sliding contacts. The effects of the contact pressure distribution and residual strain on the geometry of the contacting surfaces are derived from Betti’s reciprocal theorem with initial strain. The main advantage of this approach over the classical finite element method (FEM) is the computing time, which is reduced by several orders of magnitude. The contact problem, which is one of the most time-consuming procedures in the elastic-plastic algorithm, is obtained using a method based on the variational principle and accelerated by means of the discrete convolution fast Fourier transform (FFT) and conjugate gradient methods. The FFT technique is also involved in the calculation of internal strains and stresses. A return-mapping algorithm with an elastic predictor∕plastic corrector scheme and a von Mises criterion is used in the plasticity loop. The model is first validated by comparison with results obtained by the FEM. The effect of the friction coefficient on the contact pressure distribution, subsurface stress field, and residual strains is also presented and discussed.

Author(s):  
Eduard Antaluca ◽  
Daniel Ne´lias ◽  
Spiridon Cretu

A three-dimensional numerical model based on a semi-analytical method in the framework of small strains and small displacements with respect of Hertz’s hypotheses is presented for solving an elastic-plastic dented contact with friction. The calculation of surface deformations and pressure distribution, which is the most time consuming step during the elastic-plastic algorithm, is obtained using a method based on a variational principle with a Fast Fourier Transform (FFT) and a Conjugate Gradient Method (CGM). The method is fast enough to allow investigating the effect of a small size surface defect, here a debris denting, on the subsurface elastic-plastic stress state, requiring a fine mesh with around 106 surface grid points. Further, the FFT approach is also involved in the calculation of internal stress state. The plasticity model is based on an incremental load and Von Mises yield criterion. The effects of the contact pressure distribution and residual strain on the geometry of the contacting surfaces yield from the Betti’s reciprocal theorem with initial strain. The code is used to compute a few smooth and dented contacts, with several types of contact interfaces conditions, including frictionless and Coulomb friction. The effects of surface dents and friction on the contact pressure and subsurface stress field are presented and discussed.


2004 ◽  
Author(s):  
Yung-Chuan Chen ◽  
Jao-Hwa Kuang

The effect of rail surface crack on the wheel-rail contact pressure distribution under partial slip rolling was studied in this work. The elastic-plastic finite element model was employed for stress analyses. The numerical simulations were used to explore the effects of the contact distances and tractive force on the normal and tangential contact pressure distributions, tip plastic energy and critical wheel applied load. Contact elements were used to simulate the interaction between wheel and rail and crack surfaces. Numerical results indicate that the contact pressure distributions are significantly affected by the rail crack. Traditional contact theories are not available to describe the contact pressure distribution on the contact crack surfaces. Results also indicate that a higher friction force on the contact crack surfaces is observed for wheel subjected a larger tractive force. A larger crack surfaces friction force can reduce the sliding between crack surfaces and leads to a smaller tip plastic energy.


1999 ◽  
Vol 122 (4) ◽  
pp. 781-789
Author(s):  
L. B. Shulkin ◽  
D. A. Mendelsohn ◽  
G. L. Kinzel ◽  
T. Altan

Many manufacturing situations involve a finite thickness plate or layer of material which is pressed against a much thicker foundation of the same or different material. One key example is a blank holder (plate) pressed against a die (foundation) in a sheet metal forming operation. In designing such a plate/foundation system the design objective often involves the contact stress distribution between the plate and foundation and the design variables are typically the thickness and modulus of the plate, the stiffness of the foundation and the applied pressure distribution on the noncontacting side of the plate. In general the problem relating the variables to the contact pressure distribution is three-dimensional and requires a complex finite element or boundary element solution. However, if the applied pressure distribution consists of sufficiently localized patches, which is often the case in applications, then an approximate 3D solution can be constructed by superposition. Specifically, the paper provides a convenient calculation procedure for the contact pressure due to a single circular patch of applied pressure on an infinite, isotropic, elastic layer which rests on a Winkler foundation. The procedure is validated by using known analytical solutions and the finite element method (FEM). Next a sensitivity study is presented for ascertaining the validity of the solution’s use in constructing solutions to practical problems involving multiple patches of loading. This is accomplished through a parametric study of the effects of loading radius, layer thickness, layer elastic properties, foundation stiffness and the form of the applied pressure distribution on the magnitude and extent of the contact pressure distribution. Finally, a procedure for determining an appropriate Winkler stiffness parameter for a foundation is presented. [S1087-1357(00)00603-1]


2002 ◽  
Vol 30 (4) ◽  
pp. 240-264 ◽  
Author(s):  
X. Zhang ◽  
S. Rakheja ◽  
R. Ganesan

Abstract In this paper, a nonlinear finite element tire model is developed as an effective fast modeling approach to analyze the stress fields within a loaded tire structure, with the contact patch geometry and contact pressure distribution in the tire-road interface as functions of the normal load and the inflation pressure. The model considers the geometry and orientations of the cords in individual layers and the stacking sequence of different layers in the multi-layered system to predict the interply interactions in the belts and carcass layers. The study incorporates nearly incompressible property of the tread rubber block and anisotropic material properties of the layers. The analysis is performed using ANSYS software, and the results are presented to describe the influence of the normal load on the various stress fields and contact pressure distributions. The computed footprint geometry is qualitatively compared with the measured data to examine the validity of the model. It is concluded that the proposed model can provide reliable predictions about the three-dimensional stress and deformation fields in the multi-layered system and the contact pressure distribution in the tire-road interface.


Author(s):  
Yang Liu ◽  
Qi Yuan ◽  
Zuo Zhou

The aim of this paper is to provide some basis for the design and assembly of a rod-fastened rotor with Hirth coupling. The rod-fastened rotor is comprised of a series of discs clamped together by a central tie rod or several tie rods on the pitch circle diameter. The key difference between a rod-fastened rotor and an integrated one is the existence of contact interfaces. The contact status of contact interface in the rod-fastened rotor is the key concern for accurate rotor dynamic analysis. Therefore, the method of accurately describing the slippage status and contact status is presented in this paper. The approach of eliminating the slippage and making the radial contact pressure distribution more uniform is also presented. According to the characteristics of Hirth coupling, one model of a turbine end rotor with Hirth coupling of a heavy duty gas turbine was built. The three-dimensional finite element contact method and non-linear behaviors such as friction were also taken into account. The effect of pre-tightening forces, centrifugal forces and overhung rim lengths on the radial slippage including initial radial slippage usi and dynamic radial slippage usd of contact interface was determined. A dimensionless coefficient cr was also defined to describe the radial contact pressure distribution of contact interface which was influenced by the values of pre-tightening forces, centrifugal forces and wheel rim lengths respectively. The results of Hirth coupling indicate that the initial radial slippage increases with the pre-tightening forces, and for a fixed pre-tightening force, usi decreased with the increase of overhung rim length. In addition, there is an optimum rim length to eliminate the dynamic radial slippage usd produced by the change of the centrifugal force. Through the analysis of contact pressure distribution, we know that the reasonable design of the load relief trough processed in the overhung rim makes the contact pressure distribution more uniform. Finally, the effect of temperature load on the radial slippage and contact pressure distribution was investigated.


2006 ◽  
Vol 34 (1) ◽  
pp. 38-63 ◽  
Author(s):  
C. Lee

Abstract A tire slips circumferentially on the rim when subjected to a driving or braking torque greater than the maximum tire-rim frictional torque. The balance of the tire-rim assembly achieved with weight attachment at certain circumferential locations in tire mounting is then lost, and vibration or adverse effects on handling may result when the tire is rolled. Bead fitment refers to the fit between a tire and its rim, and in particular, to whether a gap exists between the two. Rim slip resistance, or the maximum tire-rim frictional torque, is the integral of the product of contact pressure, friction coefficient, and the distance to the wheel center over the entire tire-rim interface. Analytical solutions and finite element analyses were used to study the dependence of the contact pressure distribution on tire design and operating attributes such as mold ring profile, bead bundle construction and diameter, and inflation pressure, etc. The tire-rim contact pressure distribution consists of two parts. The pressure on the ledge and the flange, respectively, comes primarily from tire-rim interference and inflation. Relative contributions of the two to the total rim slip resistance vary with tire types, depending on the magnitudes of ledge interference and inflation pressure. Based on the analyses, general guidelines are established for bead design modification to improve rim slip resistance and mountability, and to reduce the sensitivity to manufacturing variability. An iterative design and analysis procedure is also developed to improve bead fitment.


1995 ◽  
Vol 23 (2) ◽  
pp. 116-135 ◽  
Author(s):  
H. Shiobara ◽  
T. Akasaka ◽  
S. Kagami ◽  
S. Tsutsumi

Abstract The contact pressure distribution and the rolling resistance of a running radial tire under load are fundamental properties of the tire construction, important to the steering performance of automobiles, as is well known. Many theoretical and experimental studies have been previously published on these tire properties. However, the relationships between tire performances in service and tire structural properties have not been clarified sufficiently due to analytical and experimental difficulties. In this paper, establishing a spring support ring model made of a composite belt ring and a Voigt type viscoelastic spring system of the sidewall and the tread rubber, we analyze the one-dimensional contact pressure distribution of a running tire at speeds of up to 60 km/h. The predicted distribution of the contact pressure under appropriate values of damping coefficients of rubber is shown to be in good agreement with experimental results. It is confirmed by this study that increasing velocity causes the pressure to rise at the leading edge of the contact patch, accompanied by the lowered pressure at the trailing edge, and further a slight movement of the contact area in the forward direction.


1995 ◽  
Vol 23 (1) ◽  
pp. 26-51 ◽  
Author(s):  
S. Kagami ◽  
T. Akasaka ◽  
H. Shiobara ◽  
A. Hasegawa

Abstract The contact deformation of a radial tire with a camber angle, has been an important problem closely related to the cornering characteristics of radial tires. The analysis of this problem has been considered to be so difficult mathematically in describing the asymmetric deformation of a radial tire contacting with the roadway, that few papers have been published. In this paper, we present an analytical approach to this problem by using a spring bedded ring model consisting of sidewall spring systems in the radial, the lateral, and the circumferential directions and a spring bed of the tread rubber, together with a ring strip of the composite belt. Analytical solutions for each belt deformation in the contact and the contact-free regions are connected by appropriate boundary conditions at both ends. Galerkin's method is used for solving the additional deflection function defined in the contact region. This function plays an important role in determining the contact pressure distribution. Numerical calculations and experiments are conducted for a radial tire of 175SR14. Good agreement between the predicted and the measured results was obtained for two dimensional contact pressure distribution and the camber thrust characterized by the camber angle.


1995 ◽  
Vol 23 (4) ◽  
pp. 238-255 ◽  
Author(s):  
E. H. Sakai

Abstract The contact conditions of a tire with the road surface have a close relationship to various properties of the tire and are among the most important characteristics in evaluating the performance of the tire. In this research, a new measurement device was developed that allows the contact stress distribution to be quantified and visualized. The measuring principle of this device is that the light absorption at the interface between an optical prism and an evenly ground or worn rubber surface is a function of contact pressure. The light absorption can be measured at a number of points on the surface to obtain the pressure distribution. Using this device, the contact pressure distribution of a rubber disk loaded against a plate was measured. It was found that the pressure distribution was not flat but varied greatly depending upon the height and diameter of the rubber disk. The variation can be explained by a “spring” effect, a “liquid” effect, and an “edge” effect of the rubber disk. Next, the measurement and image processing techniques were applied to a loaded tire. A very high definition image was obtained that displayed the true contact area, the shape of the area, and the pressure distribution from which irregular wear was easily detected. Finally, the deformation of the contact area and changes in the pressure distribution in the tread rubber block were measured when a lateral force was applied to the loaded tire.


Sign in / Sign up

Export Citation Format

Share Document