Investigation on Relationship between Rotors Axis Length and Ground Effect on a Small Quadrotor UAV Performance

Author(s):  
Masayoshi KOHNO ◽  
Hikaru OTSUKA ◽  
Seiga KIRIBAYASHI ◽  
Keiji NAGATANI
Author(s):  
Kexin Guo ◽  
Wenyu Zhang ◽  
Yukai Zhu ◽  
Jindou Jia ◽  
Xiang Yu ◽  
...  

Author(s):  
Ahmed Eltayeb ◽  
◽  
Mohd Fuaad Rahmat ◽  
Mohd Ariffanan Mohd Basri ◽  
◽  
...  

2013 ◽  
Vol 33 (3) ◽  
pp. 858-861 ◽  
Author(s):  
Guoqing XIA ◽  
Yuefeng LIAO ◽  
Lu WANG

Robotica ◽  
2021 ◽  
pp. 1-27
Author(s):  
Taha Elmokadem ◽  
Andrey V. Savkin

Abstract Unmanned aerial vehicles (UAVs) have become essential tools for exploring, mapping and inspection of unknown three-dimensional (3D) tunnel-like environments which is a very challenging problem. A computationally light navigation algorithm is developed in this paper for quadrotor UAVs to autonomously guide the vehicle through such environments. It uses sensors observations to safely guide the UAV along the tunnel axis while avoiding collisions with its walls. The approach is evaluated using several computer simulations with realistic sensing models and practical implementation with a quadrotor UAV. The proposed method is also applicable to other UAV types and autonomous underwater vehicles.


Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 356
Author(s):  
Shubham Mahajan ◽  
Akshay Raina ◽  
Xiao-Zhi Gao ◽  
Amit Kant Pandit

Plant species recognition from visual data has always been a challenging task for Artificial Intelligence (AI) researchers, due to a number of complications in the task, such as the enormous data to be processed due to vast number of floral species. There are many sources from a plant that can be used as feature aspects for an AI-based model, but features related to parts like leaves are considered as more significant for the task, primarily due to easy accessibility, than other parts like flowers, stems, etc. With this notion, we propose a plant species recognition model based on morphological features extracted from corresponding leaves’ images using the support vector machine (SVM) with adaptive boosting technique. This proposed framework includes the pre-processing, extraction of features and classification into one of the species. Various morphological features like centroid, major axis length, minor axis length, solidity, perimeter, and orientation are extracted from the digital images of various categories of leaves. In addition to this, transfer learning, as suggested by some previous studies, has also been used in the feature extraction process. Various classifiers like the kNN, decision trees, and multilayer perceptron (with and without AdaBoost) are employed on the opensource dataset, FLAVIA, to certify our study in its robustness, in contrast to other classifier frameworks. With this, our study also signifies the additional advantage of 10-fold cross validation over other dataset partitioning strategies, thereby achieving a precision rate of 95.85%.


Sign in / Sign up

Export Citation Format

Share Document