Robotic Arm Training System for Mitigation of Upper Limb Tremor

Author(s):  
Yuki Kitamura ◽  
Yasuhide Yoshitake ◽  
Minoru Shinohara ◽  
Atsutoshi Ikeda
2022 ◽  
Author(s):  
Madhav Rao

This study examines the system integration of a game engine with robotics middleware to drive an 8 degree offreedom (DoF) robotic upper limb to generate human-like motion for telerobotic applications. The developed architectureencompasses a pipeline execution design using Blender Game Engine (BGE) including the acquisition of real humanmovements via the Microsoft Kinect V2, interfaced with a modeled virtual arm, and replication of similar arm movements on the physical robotic arm. In particular, this study emphasizes the integration of a human “pilot” with ways to drive such a robotic arm through simulation and later, into a finished system. Additionally, using motion capture technology, a human upper limb action was recorded and applied onto the robot arm using the proposed architecture flow. Also, we showcase the robotic arm’s actions which include reaching, picking, holding, and dropping an object. This paper presentsa simple and intuitive kinematic modeling and 3D simulation process, which is validated using 8-DoF articulated robot to demonstrate methods for animation, and simulation using the designed interface.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Jing Chen

In order to make most patients recover most of their limb functions after rehabilitation training, virtual reality technology is an emerging human-computer interaction technology, which uses the computer and the corresponding application software to build the virtual reality environment. Completing the training tasks in the virtual environment attracts the patients to conduct repeated training in the game and task-based training mode and gradually realizes the rehabilitation training goals. For the rehabilitation population with certain exercise ability, the kinematics of human upper limbs is mainly analyzed, and the virtual reality system based on HTC VIVE is developed. The feasibility and work efficiency of the upper limb rehabilitation training system were verified by experiments. Adult volunteers who are healthy and need rehabilitation training to participate in the experiment were recruited, and experimental data were recorded. The virtual reality upper limb rehabilitation system was a questionnaire. By extracting the motion data, the system application effect is analyzed and evaluated by the simulation diagram. Follow-up results of rehabilitation training showed that the average score of healthy subjects was more than 4 points and 3.8 points per question. Therefore, it is feasible to perform upper limb rehabilitation training using the HTC VIVE virtual reality rehabilitation system.


2020 ◽  
Vol 305 ◽  
pp. 00022
Author(s):  
Marius Leonard Olar ◽  
Marius Risteiu ◽  
Arun Fabian Panaite ◽  
Mihai Rebrisoreanu ◽  
Oliviu Musetoiu

Under the circumstances of a patient’s upper limb disability, aided by a robotic arm with faulty controls, assistance is needed, using augmented reality as an auxiliary. Our system, with a headset, using an internet connection and an augmented reality device, placed on the assistant’s head, can ensure communication between the two, for both remote supervision and control. The assistant can enhance the control over the robotic arm, while having a head up display on the augmented reality glasses, based on what the patient sees. The communication is established through PC or mobile devices, connected to the internet. Having the patient’s view, and enhanced control over the robotic arm, the assistant can interact with nearby smart objects.


BMJ Open ◽  
2018 ◽  
Vol 8 (7) ◽  
pp. e019646 ◽  
Author(s):  
Frank Behrendt ◽  
Corina Schuster-Amft

IntroductionIn the recent past, training systems using an interactive virtual environment have been introduced to neurorehabilitation. Such systems can be applied to encourage purposeful limb movements and will increasingly be used at home by the individual patient. Therefore, an integrated valid and reliable assessment tool on the basis of such a system to monitor the recovery process would be an essential asset.ObjectivesThe aim of the study is to evaluate usability, feasibility and validity of the digital version of the Action Research Arm Test using the Bi-Manu-Trainer system as a platform. Additionally, the feasibility and usability of the implementation of action observation and motor imagery tasks into the Bi-Manu-Trainer software will be evaluated.Patients and methodsThis observational study is planned as a single-arm trial for testing the new assessment and the action observation and motor imagery training module. Therefore, 75 patients with Parkinson’s disease, multiple sclerosis, stroke, traumatic brain injury or Guillain-Barré syndrome will be included. 30 out of the 75 patients will additionally take part in a 4-week training on the enhanced Bi-Manu-Trainer system. Primary outcomes will be the score on the System Usability Scale and the correlation between the conventional and digital Action Research Arm Test scores. Secondary outcomes will be hand dexterity, upper limb activities of daily living and quality of life.HypothesisWe hypothesise that the digital Action Research Arm Test assessment is a valid and essential tool and that it is feasible to incorporate action observation and motor imagery into Bi-Manu-Trainer practice. The results are expected to give recommendations for necessary modifications and might also contribute knowledge concerning the application of action observation and motor imagery tasks using a training system such as the Bi-Manu-Trainer.Trial registration numberNCT03268304; Pre-results.


Sign in / Sign up

Export Citation Format

Share Document