119 A Method Utilizing Bending Deformation to Identify the Yield Stress of Metal-Surface Modified Layer

2011 ◽  
Vol 2011.46 (0) ◽  
pp. 42-43
Author(s):  
Yusuke KAWARAGI ◽  
Masaaki NISHIKAWA ◽  
Hitoshi SOYAMA
2011 ◽  
Vol 2011.46 (0) ◽  
pp. 46-47
Author(s):  
Tomonori MORIYA ◽  
Osamu TAKAKUWA ◽  
Yuji SANO ◽  
Masaaki NISHIKAWA ◽  
Hitoshi SOYAMA

2009 ◽  
Vol 610-613 ◽  
pp. 1150-1154
Author(s):  
Ai Lan Fan ◽  
Cheng Gang Zhi ◽  
Lin Hai Tian ◽  
Lin Qin ◽  
Bin Tang

The Mo surface modified layer on Ti6Al4V alloy was obtained by the plasma surface alloying technique. The structure and composition of the Mo modified Ti6Al4V alloy was investigated by X-ray diffraction (XRD) and glow discharge optical emission spectroscopy (GDOES). The Mo modified layer contains Mo coating on subsurface and diffusion layers between the subsurface and substrate. The X- ray diffraction analysis of the Mo modified Ti6Al4V alloy reveals that the outmost surface of the Mo modified Ti6Al4V alloy is composed of pure Mo. The electrochemical corrosion performance of the Mo modified Ti6Al4V alloy in 25°C Hank’s solution was investigated and compared with that of Ti6Al4V alloy. Results indicate that the self-corroding electric potential and the corrosion-rate of the Mo modified Ti6Al4V alloy are higher than that of Ti6Al4V alloy in 25°C Hank’s solution.


1996 ◽  
Vol 438 ◽  
Author(s):  
J. A. Knapp ◽  
D. M. Follstaedt ◽  
J. C. Barbour ◽  
S. M. Myers ◽  
J. W. Ager ◽  
...  

AbstractWe present a methodology based on finite-element modeling of nanoindentation data to extract reliable and accurate mechanical properties from thin, hard films and surface-modified layers on softer substrates. The method deduces the yield stress, Young's modulus, and hardness from indentations as deep as 50% of the layer thickness.


2013 ◽  
Vol 404 ◽  
pp. 40-43
Author(s):  
Маzhyn Skakov ◽  
Sherzod Kurbanbekov ◽  
Almira Zhilkаshinova

In the present work we have studied the phase structure of surface modified layer of austenitic steel 12Cr18Ni10Ti after electrolytic-plasma carbonitriding and nitriding. It was determined that the carbonitriding and nitriding with the subsequent hardening formed carbide and nitride phase. Also it is revealed that steel 12Cr18Ni10Ti after the electrolyte-plasma processing has high hardness. The microstructure of samples surface is presented by martensite and residual austenite. Optimum modes of steel 12Cr18Ni10Ti carbonitriding and nitriding by electrolytic-plasma way have been identified.


2014 ◽  
Vol 904 ◽  
pp. 217-221 ◽  
Author(s):  
Маzhyn Skakov ◽  
Erlan Batyrbekov ◽  
Bauyrzhan Rakhadilov ◽  
Michael Scheffler

The article examines regularities of high-speed steel surface changes in the phase and structural states of during the electrolytic-plasma processing. It is determined that after modification by electrolytic-plasma influence on the surface of R6M5 high-speed steel formation of small pores, microdefects and fine inclusion. Surface modified layer consists of nitrogen austenite, nitrogen martensite and fine nitride particles.


2014 ◽  
Vol 709 ◽  
pp. 403-409 ◽  
Author(s):  
Bauyrzhan K. Rakhadilov ◽  
Mazhyn Skakov ◽  
Erlan Batyrbekov ◽  
Michael Scheffler

The article investigates the changing in the structure and phase composition of the R6M5 high-speed steel surface layer after electrolytic-plasma nitriding. It is found that after electrolytic-plasma nitriding on the R6M5 steel surface, modified layer is formed, which consist from a diffusion layer. It was showed phase composition of difysion layer is changing depending on the nitriding. It is found that electrolytic-plasma nitriding lead to accelerated formation of the modified layer. It is determined that after electrolytic-plasma nitriding on the high-speed steel surface, modified layer is formed, consisting only of the diffusion layer.


2006 ◽  
Vol 20 (25n27) ◽  
pp. 3605-3610 ◽  
Author(s):  
MASAYOSHI MIZUTANI ◽  
JUN KOMOTORI ◽  
KAZUTOSHI KATAHIRA ◽  
HITOSHI OHMORI

The biocompatibility of titanium implants with different surface properties is investigated. We prepared three types of specimens, one ground by the newly developed ELID grinding system, another ground by conventional ELID grinding, and the other polished by SiO 2 powder. These surfaces were characterized and, the number of cell and cytotoxicity in in-vitro were measured. Energy Dispersive X-ray Spectroscopy (EDS), X-ray Photoelectron Spectroscopy (XPS) and Transmission Electron Microscope (TEM) revealed that the modified ELID system can create a significantly thick oxide layer and a diffused oxide layer, and also can control the thickness of a modified layer. The results of cell number and cytotoxicity showed that the sample ground by the modified system had the highest biocompatibility. This may have been caused by improvement of chemical properties due to a surface modified layer. The above results suggest that this newly developed ELID grinding system can create the desirable surface properties. Consequently, this system appears to offer significant future promise for use in biomaterials and other engineering components.


Sign in / Sign up

Export Citation Format

Share Document