The elevated temperature flexural strength and impact resistance of alumina ceramics strengthened by quenching

1974 ◽  
Vol 13 (1) ◽  
pp. 63-69 ◽  
Author(s):  
H.P Kirchner ◽  
R.M Gruver
2021 ◽  
pp. 096739112110093
Author(s):  
RM Abhilash ◽  
GS Venkatesh ◽  
Shakti Singh Chauhan

Reinforcing thermoplastic polymers with natural fibres tends to improve tensile and flexural strength but adversely affect elongation and impact strength. This limits the application of such composites where toughness is a major criterion. In the present work, bamboo fibre reinforced polypropylene (PP) composites were prepared with bamboo fibre content varying from 30% to 50% with improved impact resistance. Homopolymer and copolymer PP were used as the matrix polymer and an elastomer was used (10% by wt.) as an additive in the formulation. Copolymer based composites exhibited superior elongation and impact strength as compared to homopolymer based composites. The adverse impact of elastomer on tensile and flexural strength was more pronounced in homopolymer based composites. The study suggested that the properties of the bamboo composites can be tailored to suit different applications by varying reinforcement and elastomer percentage.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Wasim Barham ◽  
Ammar AL-Maabreh ◽  
Omar Latayfeh

PurposeThe influence of using magnetic water instead of tap water in the mechanical properties of the concrete exposed to elevated temperatures was investigated. Two concrete mixes were used and cast with the same ingredients. Tap water was used in the first mix and magnetic water was used in the second mix. A total of 48 specimens were cast and divided as follows: 16 cylinders for the concrete compressive strength test (8 samples for each mix), 16 cylinders for the splitting tensile strength (8 specimens for each mix) and 16 beams to test the influences of magnetized water on the flexural strength of concrete (8 specimens for each mixture). Specimens were exposed to temperatures of (25 °C, 200 °C, 400 °C and 600 °C). The experimental results showed that magnetic water highly affected the mechanical properties of concrete. Specimens cast and curried out with magnetic water show higher compressive strength, splitting tensile strength and flexural strength compared to normal water specimens at all temperatures. The relative strength range between the two types of water used was 110–123% for compressive strength and 110–133% for splitting strength. For the center point loading test, the relative flexural strength range was 118–140%. The use of magnetic water in mixing concrete contribute to a more complete hydration process.Design/methodology/approachExperimental study was carried out on two concrete mixes to investigate the effect of magnetic water. Mix#1 used normal water as the mixing water, and Mix#2 used magnetic water instead of normal water. After 28 days, all the samples were taken out of the tank and left to dry for seven days, then they were divided into different groups. Each group was exposed to a different temperature where it was placed in a large oven for two hours. Three different tests were carried out on the samples, these tests were concrete compressive strength, flexural strength and splitting tensile strength.FindingsExposure of concrete to high temperatures had a significant influence on concrete mechanical properties. Specimens prepared using magnetic water showed higher compressive strength at all temperature levels. The use of magnetic water in casting and curing concrete can increase the compressive strength by 23%. Specimens prepared using magnetic water show higher splitting tensile strength at all temperatures up to 33%. The use of magnetic water in casting and curing can strengthen and increase concrete resistance to high temperatures, a significant enhancement in flexural strength at all temperatures was found with a value up to 40%.Originality/valuePrevious research proved the advantages of using magnetic water for improving the mechanical properties of concrete under normal conditions. The potential of using magnetic water in the concrete industry in the future requires conducting extensive research to study the behavior of magnetized concrete under severe conditions to which concrete structures may be subjected to. These days, there are attempts to obtain stronger concrete with high resistance to harsh environmental conditions without adding new costly ingredients to its main mixture. No research has been carried out to investigate the effect of magnetic water on the mechanical properties of concrete exposed to elevated temperature. The main objective of this study is to evaluate the effect of using magnetic water on the mechanical properties of hardened concrete subjected to elevated temperature.


2015 ◽  
Vol 754-755 ◽  
pp. 152-156 ◽  
Author(s):  
Nur Ain Jaya ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
Che Mohd Ruzaidi Ghazali ◽  
M. Binhussain ◽  
Kamarudin Hussin ◽  
...  

Clay based geopolymer ceramic were produced through the geopolymerisation process by the alkali activation of kaolin with an activator solution which is mixture of sodium silicate and sodium hydroxide and undergoes heating at elevated temperature. The concentration of NaOH used in this study was in the range of 6 M-12 M. The ratio of kaolin to alkaline activator used is 1.0. Three different ratios of Na2SiO3/NaOH of 0.16, 0.24 and 0.32 were used to investigate the optimum flexural strength. The samples were cured at 80 °C for 24 hours and sintered at temperatures ranging from 900 °C-1200 °C. The optimum flexural strength of 86.833 MPa is obtained when the ratios of Na2SiO3/NaOH is 0.24 with the NaOH concentration of 12M at 1200 °C.


2021 ◽  
Vol 20 (1) ◽  
pp. 37-51
Author(s):  
Kubilay Akçaözoğlu ◽  
◽  
Adem Kıllı ◽  

In this study, the effect of curing conditions on the mechanical properties of slurry infiltrated fiber reinforced concrete (SIFCON) was investigated. For this purpose, SIFCON samples containing 4% and 8% steel fiber with two different aspect ratios were produced. The samples were subjected to three different curing types, namely standard, dry and accelerated curing methods. Ultrasonic wave velocity, flexural strength, fracture toughness, compressive strength, impact resistance and capillary water absorption tests were performed on the samples. The highest flexural strength was found to be achieved in the samples with an aspect ratio of 55 and a content of 8% steel fiber. The most suitable curing method was determined as the standard curing method and the best flexural strength was achieved at the rate of 8%. According to the test results, the best strength properties were achieved in the samples exposed to the standard curing method. In addition, the samples exposed to the accelerated curing method showed satisfactory values. The accelerated curing method can be used as an alternative in SIFCON production especially in applications requiring mass production.


2019 ◽  
Vol 11 (8) ◽  
pp. 2200 ◽  
Author(s):  
Gerardo Araya-Letelier ◽  
Pablo Maturana ◽  
Miguel Carrasco ◽  
Federico Carlos Antico ◽  
María Soledad Gómez

Commercial polypropylene fibers are incorporated as reinforcement of cement-based materials to improve their mechanical and damage performances related to properties such as tensile and flexural strength, toughness, spalling and impact resistance, delay formation of cracks and reducing crack widths. Yet, the production of these polypropylene fibers generates economic costs and environmental impacts and, therefore, the use of alternative and more sustainable fibers has become more popular in the research materials community. This paper addresses the characterization of recycled polypropylene fibers (RPFs) obtained from discarded domestic plastic sweeps, whose morphological, physical and mechanical properties are provided in order to assess their implementation as fiber-reinforcement in cement-based mortars. An experimental program addressing the incorporation of RPFs on the mechanical-damage performance of mortars, including a sensitivity analysis on the volumes and lengths of fiber, is developed. Using analysis of variance, this paper shows that RPFs statistically enhance flexural toughness and impact strength for high dosages and long fiber lengths. On the contrary, the latter properties are not statistically modified by the incorporation of low dosages and short lengths of RPFs, but still in these cases the incorporation of RPFs in mortars have the positive environmental impact of waste encapsulation. In the case of average compressive and flexural strength of mortars, these properties are not statistically modified when adding RPFs.


Activated Slag (AAS) and Fly Ash (FA) based geopolymer concrete a new blended alkali-activated concrete that has been progressively studied over the past years because of its environmental benefits superior engineering properties. Geopolymer has many favorable characteristics in comparison to Ordinary Portland Cement. Many base materials could be utilized to make geopolymer with the convenient concentration of activator solution. In this study, the experimental program composed of two phases; phase on divided into four groups; Group one deliberated the effect of sodium hydroxide molarity and different curing condition on compressive strength. Group two studied the effect of alkali activated solution (NaOH and Na2SiO3) content on compressive strength and workability. The effect of sand replacement with slag on compressive strength and workability was explained in group three. Group four studied the effect of slag replacement with several base materials Fly Ash (FA), Ordinary Portland Cement (OPC), pulverized Red Brick (PRB), and Meta Kaolin (MK). Phase two contains three mixtures from phase one which had the highest compressive strength. For each mixture, the fresh concrete test was air content. In addition the hardened concrete tests were the compressive strength at 3, 7, 28, 90, 180, and 365 days, the flexural strength at 28, 90, and 365 days, and the young's modulus at 28, 90, and 365 days. Moreover; the three mixtures were exposed to elevated temperature at 100oC, 300oC, and 600oC to study the effect of elevated temperature on compressive and flexural strength.


2019 ◽  
Vol 22 (3) ◽  
pp. 208-212
Author(s):  
Sheelan M. Hama ◽  
Alhareth M. Abdulghafor ◽  
Mohammed Tarrad Nawar

In this work, waste glass powder from broken windows and plastic fibers from waste polyethylene terephthalate bottles are utilized to produce an economical self-compact concrete. Fresh properties (slump flow diameter, slump Flow T50, V. Funnel, L–Box), mechanical properties (Compressive strength and Flexural strength) and impact resistance of self-compact concrete are investigated. 15% waste glass powder as a partial replacement of cement with five percentages of polyethylene terephthalate plastic waste were adopted: 0% (reference), 0.5%, 0.75%, 1%, 1.25% and 1.5% by volume. It seems that the flow ability of self-compact concrete decreases with the increasing of the amount of plastic fibers. The compressive strength was increased slightly with plastic fiber content up to (0.75%), about 4.6% For more than (0.75%) plastic fiber. The compressive strength began to decrease about 15.2%. The results showed an improvement in flexural strength and an impact on the resistance in all tested specimens’ content of the plastic fibers, especially at (1.5%) fibers.


2020 ◽  
Vol 156 ◽  
pp. 05010
Author(s):  
Muhammad Ridwan ◽  
Hu Liang Jun ◽  
Isamu Yoshitake

This study focuses on the thermo-mechanical properties of mortar in the retrofitting cover of additional reinforcement for existing concrete structures. In addition, the residual mechanical properties of high strength mortar incorporating polypropylene fibers subjected to the effect of fiber length and the elevated temperature were investigated. Several experiments were conducted to determine the optimum mixture proportions of high strength mortar incorporating polypropylene fibers which had a slump-flow of 25–30 cm, compressive strength of 50 MPa or higher, and flexural strength of 4–8 MPa. Subsequently, an experiment was conducted by using high-strength mortar-blended polypropylene fibers with a length of 2 cm, and the ratio of fiber length to the diameter of cylinder mortar-specimens was 0.4. The experimental parameters were the weight volume of fibers (0 %, 0.5 %, 1 %, and 2%) and the heating temperature (100, 200 and 300 °C). The effect of the mixing parameters, including polypropylene length on compressive strength, slump-flow and the flexural strength of mortar were discussed. It is evident that fiber in the mortar cover influenced the initial and residual mechanical properties, such as elasticity, compressive strength, and Poisson’s ratio, of the mortar.


Sign in / Sign up

Export Citation Format

Share Document