scholarly journals Effects of Helix Angle, Face Width and Number of Teeth on Root Stresses of Helical Internal Gears.

1996 ◽  
Vol 62 (596) ◽  
pp. 1580-1586
Author(s):  
Kouitsu MIYACHIKA ◽  
Satoshi ODA ◽  
Takao KOIDE
Author(s):  
Ahmed M. M. El-Bahloul ◽  
Yasser Z. R. Ali

The main objective of this paper is to study the effect of gear geometry on the discharge of gear pumps. We have used gears of circular-arc tooth profile as gear pumps and have compared between these types of gearing and spur, helical gear pumps according to discharge. The chosen module change from 2 to 16 mm, number of teeth change from 8 to 20 teeth, pressure angle change from 10 to 30 deg, face width change from 20 to 120 mm, correction factor change from −1 to 1, helix angle change from 5 to 30 deg, and radii of curvature equal 1.4, 1.5, 2, 2.5, 2.75, and 3m are considered. The authors deduced that the tooth rack profile with radius of curvature equal 2.5, 2.75, 3m for all addendum circular arc tooth and convex-concave tooth profile, and derived equations representing the tooth profile, and calculated the points of intersections between curves of tooth profile. We drive the formulas for the volume of oil between adjacent teeth. Computer program has been prepared to calculate the discharge from the derived formulae with all variables for different types of gear pumps. Curves showing the change of discharge with module, number of teeth, pressure angle, face width, correction factor, helix angle, and radius of curvature are presented. The results show that: 1) The discharge increases with increasing module, number of teeth, positive correction factor, face width and radius of curvature of the tooth. 2) The discharge increases with increasing pressure angle to a certain value and then decreases with increasing pressure angle. 3) The discharge decreases with increasing helix angle. 4) The convex-concave circular-arc gears gives discharge higher than that of alla ddendum circular arc, spur, and helical gear pumps respectively. 5) A curve fitting of the results are done and the following formulae derived for the discharge of involute and circular arc gear pumps respectively: Q=A1bm2z0.895e0.065xe0.0033αe−0.0079βQ=A2bm2z0.91ρ10.669e−0.0047β


Author(s):  
Ahmed M. M. El-Bahloul ◽  
Yasser Z. R. Ali

The main objective of this paper is to study the effect of gear geometry on the oil pressure of gear pumps. We have used gears of circular-arc tooth profile as gear pumps and have compared between these types of gearing and spur, helical gear pumps according to pressure. The chosen module change from 2 to 16 mm, number of teeth change from 8 to 20 teeth, pressure angle change from 10 to 30 deg, face width change from 20 to 120 mm, correction factor change from −1 to 1, helix angle change from 5 to 30 deg and radii of curvatures equal 1.4, 1.5, 2, 2.5, 2.75, and 3m are considered. The authors deduced that the tooth rack profile with radius or curvature equal 2.5, 2.75, 3m for all- addendum circular arc tooth and convex-concave tooth profile, and derived equations of pressure difference for spur, helical, and circular- are gear pumps. Computer program has been prepared to calculate the pressure from the derived formulae with all variables for different types of gear pumps. Curves showing the change of pressure with module, number of teeth, pressure angle, face width, correction factor, helix angle, and radius of curvature are presented. The results show that: 1) Pressure increases with increasing helix angle. 2) Pressure decreases with increasing face width, number of teeth, positive correction factor, module, pressure angle and radius of curvature of the tooth. 3) The all- addendum circular-arc gears generates pressure higher than helical, convex-concave and spur gear pumps. 4) A curve fitting is done for all variables with pressure and the following formulae derived for the pressure: P=A3b−0.943z−1.175m−2.1β0.175e−0.61xe−0.0048αP=A4b−1z−1.34m−2β0.119ρ1−0.393 These formulae represent simple tool for the designer to calculate the pressure of involute and circular arc gear pumps.


1965 ◽  
Vol 7 (2) ◽  
pp. 220-223 ◽  
Author(s):  
M. J. French

The conformity of circular-arc profile gears of the Wildhaber-Novikov sort is examined. It is indicated that the contact area may be a banana shape rather than the ellipse hitherto assumed. Two consequences of this are that too small a difference between the profile radii may reduce the useful conformity, and that it is not possible to increase the torque capacity per unit face width indefinitely by reducing the helix angle.


Author(s):  
Nicolas Voeltzel ◽  
Yann Marchesse ◽  
Christophe Changenet ◽  
Fabrice Ville ◽  
Philippe Velex

This paper investigates the windage power losses generated by helical gears rotating in pure air based on experimental results and a computational fluid dynamic code. It is found that the simulated flow patterns are totally different from those calculated for spur gears and that both tooth face width and helix angle are influential. The windage losses derived from Dawson’s and Townsend’s formulae are critically assessed using computational fluid dynamic results thus highlighting the limits of a unique formulation for accurate windage loss prediction. Finally, an analytical approach is suggested which gives good results providing that the flow rates at the boundaries of the inter-tooth domains can be estimated.


2012 ◽  
Vol 134 (12) ◽  
Author(s):  
Shi H. Yuan ◽  
Hui L. Dong ◽  
Xue Y. Li

An integrated model for gear pair that combines the dynamic load with the mixed elastohydrodynamic lubrication (EHL) theory is proposed in this paper covering the film squeeze effect as well as the friction force generated from the rough surfaces. Comparisons between the two models of load which are, respectively, based on minimum elastic potential energy (MEPE) criterion and dynamic motion equations built up in this paper are discussed. The results show that at low speed the loads calculated by the two models are similar. However, with increasing speed, the load exhibits dynamic characteristics gradually and reaches the highest value at resonant speed. Besides, the effects of the helix angle and the lubricant viscosity are also analyzed. Increasing the ambient viscosity could intensify the film stiffness and viscous damping. Gear with larger helix angle could weaken the impact phenomenon at the shift points where one tooth-pair disengages. Moreover, it is symmetric with regard to the pressure and film thickness across the face width for spur gear. Differently, the pressure for helical gear has a higher value at the dedendum of pinion where the film becomes thinner. In addition, speeding up the pinion would generally result in higher dynamic load and film pressure but thicker film thickness.


2011 ◽  
Vol 77 (783) ◽  
pp. 4263-4273
Author(s):  
Eiri NAGATA ◽  
Tomokazu TACHIKAWA ◽  
Morimasa NAKAMURA ◽  
Ichiro MORIWAKI

2011 ◽  
Vol 86 ◽  
pp. 904-907 ◽  
Author(s):  
Yan Jun Gong ◽  
Xue Yao Wang ◽  
Han Zhao ◽  
Kang Huang

The paper conducted a modal analysis of an internal helical gear based on AWE, and obtained its first 6 order natural frequency. Then the paper analyzed the influence of its parameters on the vibration characteristics of the internal helical gear, found that if the helix angle, the normal module, the number of teeth of the internal helical gear change, its vibration characteristics will change, but the change of the pressure angle doesn’t influence its vibration characteristics.


1981 ◽  
Vol 103 (1) ◽  
pp. 134-140 ◽  
Author(s):  
K. Lingaiah ◽  
K. Ramachandra

Conformity factor, which is more rationally defined as the ratio of the area of contact to the active area of the flank of the mating teeth, is theoretically evaluated for Wildhaber-Novikov circular-arc gears, using Hertz’s theory of contact stress, without neglecting the effect of the difference in the profile radii of the pinion and wheel teeth, which is an important factor in fully-hardened gears. The variation of the conformity factor with the helix angle, pressure angle, ratio of the profile radii, module and the number of teeth follows closely the variation of load-carrying capacity per unit face-width of these gears and hence, from this study it is concluded that conformity factor is a more rational index on which the selection of the profile and material parameters should be based. This study of the conformity factor, for the particular profile geometry, indicates 7.5 to 15.0 deg as the suitable helix-angle range for achieving maximum load-carrying capacity per unit face-width.


Author(s):  
Sayed M. Metwalli ◽  
Ehab A. El Danaf

Abstract The present work is an application of Computer Aided Design and optimization techniques to solve the problem of designing a pair of gears. The CAD programs have the initial freedom to change the design variables: the module, the number of teeth, the face width, and the material through a data base display, and a full detailed design stage that applies the AGMA bending and contact number checking criteria, and the bending fatigue strength and the surface endurance strength criteria. Other programs are also linked to optimize spur gears under the objective of minimizing the volume. The design vector is taken to be the module, the number of teeth, and the face width, with the interaction between bending and contact stress constraints. These programs were utilized to study the behavior of the optimum parameters for a full range of cases. Charts of the optimum results are plotted. For optimizing helical gears, the design vector is taken as the module, the number of teeth, the face width, and the helix angle. A comparison is made between values of the objective function and optimum parameters for spur and helical gears for a wide range of cases. A comparison is also made of the results with other previous works of optimization and proved that the approach presented here gives better optimum results for the same loading case.


Sign in / Sign up

Export Citation Format

Share Document