scholarly journals Active Vibration Control of Multiple Buildings Connected with Active Control Bridges. (1st Report. Seismic Response Control of Four Model Buildings Arranged in Parallel).

1998 ◽  
Vol 64 (624) ◽  
pp. 2840-2846 ◽  
Author(s):  
Yukito MATSUMOTO ◽  
Fumio DOI ◽  
Kazuto SETO
Author(s):  
Young-Tai Choi ◽  
Norman M. Wereley ◽  
Gregory J. Hiemenz

Novel semi-active vibration controllers are developed in this study for magnetorheological (MR) fluid-based vibration control systems, including: (1) a band-pass frequency shaped semi-active control algorithm, (2) a narrow-band frequency shaped semi-active control algorithm. These semi-active vibration control algorithms designed without resorting to the implementation of an active vibration control algorithms upon which is superposed the energy dissipation constraint. These new Frequency Shaped Semi-active Control (FSSC) algorithms require neither an accurate damper (or actuator) model, nor system identification of damper model parameters for determining control current input. In the design procedure for the FSSC algorithms, the semi-active MR damper is not treated as an active force producing actuator, but rather is treated in the design process as a semi-active dissipative device. The control signal from the FSSC algorithms is a control current, and not a control force as is typically done for active controllers. In this study, two FSSC algorithms are formulated and performance of each is assessed via simulation. Performance of the FSSC vibration controllers is evaluated using a single-degree-of-freedom (DOF) MR fluid-based engine mount system. To better understand the control characteristics and advantages of the two FSSC algorithms, the vibration mitigation performance of a semi-active skyhook control algorithm, which is the classical semi-active controller used in base excitation problems, is compared to the two FSSC algorithms.


Author(s):  
Kazuto Seto ◽  
Chinori Iio ◽  
Shigeru Inaba ◽  
Shingo Mitani ◽  
Fadi Dohnal ◽  
...  

This paper presents a vibration control method for multiple high-rise buildings against large earthquake motion. This method is called as “Connected Control Method (CCM)” and has the merit of obtaining enough control force to protect high-rise buildings from large earthquakes using passive and semiactive devices. In this paper, first a modeling approach for four scaled building structures is shown and effectiveness of the CCM using LQ control approach for them is demonstrated by seismic response control results. Next, in order to reduce the supplied power, a semi-active control approach in place of active control is applied for the CCM. For this purpose, a new MR damper is developed and designed to have a close performance with results of the LQ control. This performance is verified by measured frequency responses.


2010 ◽  
Vol 163-167 ◽  
pp. 2477-2481
Author(s):  
Na Xin Dai ◽  
Ping Tan ◽  
Fu Lin Zhou

To make the active and semi-active vibration control system in civil engineering get rid of external power supply, a new piezoelectric friction damper with self-power and sensing is designed in this paper and a semi-active control system based on this damper is presented. This system includes three key parts: a piezoelectric friction damper, a power generator based on the piezoelectric stack electro-mechanical energy conversion and a control circuit. It makes full use of the direct and converse piezoelectric effect. At the same time, it also overcomes the deficiency that the frictional force as damping can not be accurately desired in semi-active vibration control system. On the basis of it, the control equation of PFD is formulated. Numerical simulations for seismic protection of story isolation equipped with this system excited by a historical earthquake are conducted by MATLAB. Skyhook control is used to command a piezoelectric friction damper in the semi-active control. It is noticed that only one accelerometer is needed to monitor the response to realize the skyhook control, which greatly simplifies the classical semi-active vibration control system.


Author(s):  
G. Nelson ◽  
R. Rajamani ◽  
A. Gastineau ◽  
A. Schultz ◽  
S. Wojtkiewicz

The fatigue life of a bridge can be extended by fifty years just by reducing the peak strain levels it experiences by 33%. This paper utilizes a dynamic model of the Cedar Avenue tied arch steel bridge in Minnesota to investigate active control technologies for peak strain reduction. Simulations show that the use of passive structural modification devices such as stiffeners and dampers is inadequate to reduce the key resonant peaks in the frequency response of the bridge. Both active and semi-active vibration control strategies are then pursued. Active vibration control can effectively reduce all resonant peaks of interest, but is practically difficult to implement on a bridge due to power, size, and cost considerations. Semi-active control with a variable orifice damper in which the damping coefficient is changed in real-time using bridge vibration feedback can be practically implemented. Simulation results show that the proposed semi-active control system can reduce many of the resonant peaks of interest, but is unable to reduce the response at one key resonant frequency. Further analysis reveals that the location of the actuator on the bridge chosen for the semi-active controller is inappropriate for controlling the specific resonant frequency of issue. By modifying the actuator location, it would be possible to obtain control of all bridge resonant frequencies with the semi-active control system.


2021 ◽  
Author(s):  
Mehmet Ali GUVENC ◽  
Hasan Huseyin BILGIC ◽  
Selçuk MISTIKOĞLU

Abstract In recent years, with the development of sensor technologies, communication platforms, cyber physical systems, storage technologies, internet applications and controller infrastructures, the way has been opened to produce competitive products with high quality and low cost. In turning, which is one of the important processes of machining, chatter vibrations are among the biggest problems affecting product quality, productivity and cost. There are many techniques proposed to reduce chatter vibrations for which the exact cause cannot be determined. In this study, an active vibration control based on Sliding Mode Control (SMC) has been implemented in order to reduce and eliminate chatter vibration, which is undesirable for the turning process. In this context, three-axis acceleration data were collected from the cutting tool during the turning of Ti6Al4V. Finite Impulse Response (FIR) filtering, Fast Fourier Transform (FFT) analysis and integral process were carried out in order to use the raw acceleration data collected over the system in control. The system was modeled mathematically and an active control block diagram was created. It was observed that chattering decreased significantly after the application of active vibration control. The surface quality formed by the amplitude of the graph obtained after active control has been compared and verified with the data obtained from the actual manufacturing result.


2013 ◽  
Vol 431 ◽  
pp. 301-305 ◽  
Author(s):  
Bo Fang ◽  
Guo Qing Jiang ◽  
Ye Wei Zhang ◽  
Jian Zang

This paper studied the dynamic suppression problems of active control of composite panel with uncertain parameters. Considering uncertain factors of panel, finite element vibration dynamic model is established for active vibration control, through interval analysis method to estimate panel in active control of vibration critical air speed and flutter amplitude, to this determined active suppression effects of panel, numerical simulation indicate that through with Piezoelectric patches as active vibration control, the panel with uncertain parameters of whole interval of vibration critical wind speed were changed from vibration to convergence, showing that the control effect was significant.


Sign in / Sign up

Export Citation Format

Share Document