scholarly journals Evaluation methods of elastoplastic response of components to earthquake motions (Dynamic Analysis of MDOF Systems using elastoplastic response spectrum)

2017 ◽  
Vol 83 (850) ◽  
pp. 16-00438-16-00438
Author(s):  
Ichiro TAMURA ◽  
Shinichi MATSUURA
Author(s):  
Ankit Kumar

Abstract: This study examines the composite structure that is increasing commonly in developing countries. For medium-rise to high-rise building construction, RCC structures is no longer economical due to heavy dead weight, limited span, low natural frequency and hazardous formwork. The majority of commercial buildings are designed and constructed with reinforced concrete, which largely depends on the existence of the constituent materials as well as the quality of the necessary construction skills, and including the usefulness of design standards. Conventional RCC structure is not preferred nowadays for high rise structure. However, composite construction, is a recent development in the construction industry. Concrete-steel composite structures are now very popular due to some outstanding advantages over conventional concrete and steel structures. In the present work, RCC and steel-concrete composite structure are being considered for a Dynamic analysis of a G+25-storey commercial building of uniform and optimized section, located at in seismic zone IV. Response Spectrum analysis method is used to analyze RCC and composite structure, CSI ETABS v19 software is used and various results are compared such as time period, maximum storey displacement, maximum storey stiffness. Maximum storey shear and maximum stoey overturning moment. Keywords: RCC Structure, Composite Structure, Uniform Section, Optimized Section, Shear Connector, Time Period, Storey Displacement, Storey Shear, Storey Stiffness, Response Spectrum method, ETABS


2014 ◽  
Vol 969 ◽  
pp. 119-124 ◽  
Author(s):  
Kamila Kotrasova ◽  
Ivan Grajciar

Ground-supported tanks are used to store a variety of liquids. This paper provides theoretical background of seismic design of liquid storage ground-supported circular tanks. During earthquake activity the liquid exerts impulsive and convective (sloshing) actions on the walls and bottom of the circular tank. Seismic response was calculated by using the seismic response spectrum. Knowledge of these inner forces is important for design of reservoirs.


2000 ◽  
Vol 27 (3) ◽  
pp. 533-542 ◽  
Author(s):  
Mohamed A Khedr ◽  
Ghyslaine McClure

A simplified static method for estimating the member forces in self-supporting lattice telecommunication towers due to both horizontal and vertical earthquake excitations is presented in this paper. The method is based on the modal superposition technique and the response spectrum approach, which are widely used for seismic analysis of linear structures. It is assumed that the lowest three flexural modes of vibration are sufficient to correctly estimate the tower's response to horizontal excitation, while only the lowest axial mode is sufficient to capture the response to vertical excitation. An acceleration profile along the height of the tower is defined using estimates of the lowest three flexural modes or the lowest axial mode, as appropriate, together with the spectral acceleration values corresponding to the associated natural periods. After the mass of the tower is calculated and lumped at the leg joints, a set of equivalent static lateral or vertical loads can be determined by simply multiplying the mass profile by the acceleration profile. The tower is then analyzed statically under the effect of these loads to evaluate the member forces. This procedure was developed on the basis of detailed dynamic analysis of ten existing three-legged self-supporting telecommunication towers with height range of 30-120 m. The maximum differences in member forces obtained with the proposed method and the detailed seismic analysis are of the order of ±25% in the extreme cases, with an average difference of ±7%. The results obtained for two towers with heights of 66 and 83 m are presented in this paper to demonstrate the accuracy and practicality of the proposed method.Key words: self-supporting tower, earthquake, vertical excitation, dynamic analysis.


10.14311/638 ◽  
2004 ◽  
Vol 44 (5-6) ◽  
Author(s):  
P. Štemberk ◽  
J. Kruis

This paper deals with the dynamic analysis of a 2D concrete frame with uncertainties which are an integral part of any real structure. The uncertainties can be modeled by a stochastic or a fuzzy approach. The fuzzy approach is used and the influence of uncertain input data (modulus of elasticity and density) on output data is studied. Fuzzy numbers are represented by ?-cuts. In order to reduce the volume of computation in the fuzzy approach, the response surface function concept is applied. In this way the natural frequencies and mode shapes described by fuzzy numbers are obtained. The results of fuzzy dynamic analysis can be used, e.g., in seismic design of structures based on the response spectrum. 


Over the past 35 years, the growing demand for wireless and broadcast communication has spurred a dramatic increase in steel telecommunication tower construction and maintenance. Failure of such structures due to severe earthquakes is a major concern. The Indian code suggests the detailed static and dynamic analysis provisions that are to be followed for lumped mass systems like buildings. In case of continuous structures the code only suggests the static analysis provisions in details. But, due to the lack of detailed Indian codal provisions for dynamic analysis of telecommunication tower, a comparative study using response spectrum method is being carried out with the help of suitable software for different ground level conditions in case of India. According to the theoretical approach of any structural dynamics problem, the structures without lumped mass system is considered as continuous system which is further idealized as a series of small elemental segments. Furthermore, the structural analysis of these elemental segments using the concept of Finite Element Method (FEM) is being carried out with the help of the mentioned software and the results of natural frequencies, time periods of the structure are compared to obtain the optimum number of elemental discretization along with the optimum method of modal combination.


2017 ◽  
Vol 3 (10) ◽  
pp. 881 ◽  
Author(s):  
Ayman Mohammed Abd-Elhamed ◽  
Sayed Mahmoud

This paper aimed to investigate the seismic response of reinforced concrete (RC) frame buildings under linear and non-linear dynamic analysis. Different building models as bare frame and fully masonry infill frame have been developed for performing the analysis. In order to investigate the effect of irregular distributions of masonry infill walls in elevation on the seismic response behavior, an infill frame model with soft story has also been developed. The linear response spectrum (RS) dynamic analysis and the nonlinear time-history (TH) analysis methods are employed. Moreover, the induced energies in terms of input, potential and kinetic are also obtained from the TH analysis. Moreover, the interaction between infill walls and frames leads to considerable change in the induced responses comparable with the bare model. 


Author(s):  
Ioan Parausanu ◽  
Stefan Sorohan ◽  
Horia Gheorghiu ◽  
Anton Hadar ◽  
Dumitru I. Caruntu

The first part of this article presents a dynamic analysis of the fan of a generator connected by rigid coupling to a diesel engine. The purpose of this analysis is to correlate the main components of the fan’s frequency response spectrum with the ones of the excitation source, i.e., the diesel engine. The second part describes a finite element analysis of the fan in order to find the best design solution.


Author(s):  
Michael Feng ◽  
Peter Kwok ◽  
Dariusz Pryputniewicz ◽  
Ryan Marinis ◽  
Ryszard Pryputniewicz

During qualification testing of an electronics module, several leads in one corner of a 352 pin ceramic quad flat pack (CQFP) component failed. The module was exposed to several different environments including sine vibration, thermal cycling, random vibration, and shock. The last test environment applied was seven consecutive shocks normal to the printed wiring board. Given the severity of the shock response spectrum, it was believed that the shocks normal to the board were the culprit. Therefore, a finite element model (FEM) was created of the module to diagnose the cause of the failure. The FEM modeled all 352 CQFP leads using quadratic beam elements. Besides the CQFP, the FEM also included the aluminum frame, the printed wiring board, and several adjacent components. It was validated by comparing the board’s mode frequencies and shapes computed in ANSYS to those imaged by optoelectronic holography on the test hardware. ANSYS was also used to rule out sine vibration, random vibration, and thermal cycling as causes of the failure. To evaluate the stress levels in the leads during the shock pulse, the actual acceleration experienced by the hardware during a shock pulse was recorded and used in an explicit dynamic analysis in LS-DYNA. In addition, a bilinear elastic-plastic material model was used for the kovar leads. The analysis showed that the suspect leads reached their ultimate tensile strength by the fourth consecutive shock. These results confirmed that the leads failed due to the consecutive shock pulses. The FEM was subsequently used to evaluate a redesign of the module to mitigate the risk to mechanical shock.


Sign in / Sign up

Export Citation Format

Share Document