Effect of Sequential Planting, Plant Replacement, and Planting Date on Marketable Yield of Bell Pepper, Capsicum annuum var. annuum L.

1995 ◽  
Vol 1 (1) ◽  
pp. 73-78 ◽  
Author(s):  
V. M. Russo
2014 ◽  
Vol 94 (2) ◽  
pp. 303-310 ◽  
Author(s):  
Olanike Aladenola ◽  
Chandra Madramootoo

Aladenola, O. and Madramootoo, C. 2014. Response of greenhouse-grown bell pepper (Capsicum annuum L.) to variable irrigation. Can. J. Plant Sci. 94: 303–310. In order to optimize water use in bell pepper production information about the appropriate irrigation water applications and agronomic and physiological response to mild and severe water stress is necessary. Different water applications were tested on yield, quality and water stress threshold of greenhouse-grown bell pepper (Capsicum annuum L.) cultivar Red Knight in 2011 and 2012 on the Macdonald Campus of McGill University, Ste Anne De Bellevue, QC. The study was carried out on a soil substrate in the greenhouse. Irrigation was scheduled with four treatments:120% (T1), 100% (T2), 80% (T3), and 40% (T4) replenishment of crop evapotranspiration in a completely randomized design. The highest marketable yield, water use efficiency and irrigation water use efficiency were obtained with T1 in both years. T1 received 20% more water than T2 to produce 23% more marketable yield than T2. Fruit total soluble solids content was highest in T4, and smallest in T1. The mean crop water stress index (CWSI) of the irrigation treatments ranged between 0.08 and 1.18. Leaf stomatal conductance of bell pepper was 75 to 80% lower in T4 than in T1. Regression obtained between stomatal conductance and CWSI resulted in a polynomial curve with coefficients of determination of 0.88 and 0.97 in 2011 and 2012, respectively. The result from this study indicate that the yield derived justifies the use of an extra quantity of water. Information from this study will help water regulators to make appropriate decision about water to be allocated for greenhouse production of bell pepper.


2018 ◽  
Vol 10 (3) ◽  
pp. 826-830
Author(s):  
Ranjeet Chatterjee ◽  
Aradhana Sen ◽  
Sandip Mahanta ◽  
Ravi Kiran Thirumdasu ◽  
Dipika Mal

Bell pepper fruits fetches higher premium during early winter or late winter as off-season crops. An experiment was conducted during late winter (February to June) of 2013 at Uttar Banga Krishi Viswavidyalaya, Pundibari, West Bengal, India to compare the performance of bell pepper (Capsicum annuum L.) in open field and agro shade net under different transplanting dates and pruning level which was laid out in split split plot design with 3 replications. The results revealed that agro shade net cultivation of bell pepper emerged as best in terms of highest plant height (52.42 cm), and higher number of fruit    (11.18 plant-1). The interaction effect combining shade net cultivation with 1st February planting date coupled with 3 shoot pruning proved superiority with respect to growth and yield characters of bell pepper and resulted in many fold improvement in the form of higher fruit  number (16.21 plant-1), individual fruit weight (107.54 g) and maximum fruit yield (1743.21 g plant-1).


HortScience ◽  
1996 ◽  
Vol 31 (4) ◽  
pp. 573c-573
Author(s):  
Vanessa Drouot ◽  
Eric H. Simonne ◽  
James B. Witt

An irrigation scheduling model represented by 12.7 DAT * 0.5 * ASW = D(DAT – 1) + [Ep(DAT) * CF(DAT) – R – I] was tested in central Alabama for Spring-grown bell pepper (Capsicum annuum L.). In the model, DAT (days after transplanting) is crop age; effective root depth is 12.7 DAT with a maximum of 250 mm; usable water (mm3·mm–3) is 0.5 ASW; deficit on the previous day is D(DAT–1); evapotranspiration is pan evaporation [Ep(DAT)] times a crop factor value [CF(DAT) = 0.15 + 0.018 DAT – 0.0001 DAT * DAT]; rainfall (R) and irrigation (I) are in mm. The model called for 13 irrigations between 17 and 85 DAT. Under the current N recommendation rate for bell pepper (112 kg/ha), marketable yield increased quadratically from 36% to 148% of the model rate. Highest marketable yields occurred near the model rate. Under a N rate of 170 kg/ha, yields increased linearly. These results suggests that the model provided adequate moisture to maximize bell pepper marketable yields under the recommended N rate.


1997 ◽  
Vol 7 (2) ◽  
pp. 138-142
Author(s):  
Regina P. Bracy

Field studies were conducted in Spring 1991, 1992, and 1993 to determine if stand deficiencies of 10%, 20%, or 30% affected bell pepper (Capsicum annuum L.) yield and fruit size. Subsequent replanting to a 100% stand and timing of replanting also were evaluated for effects on fruit yield. Stand deficiencies of up to 30% and replanting to a complete stand 2 or 3 weeks after initial transplanting did not affect yield per acre and average weight per fruit of bell pepper plants grown on polyethylene-mulched beds during 3 years of tests. Bell pepper plants grown in 10%, 20%, or 30% deficient stand had greater marketable yield per plant than plants grown in 100% stand. Replanting to a complete stand 3 weeks after initial transplanting decreased early marketable yield and production per plant over replanting 2 weeks after initial transplanting.


HortScience ◽  
2010 ◽  
Vol 45 (4) ◽  
pp. 701-706 ◽  
Author(s):  
Qingren Wang ◽  
Waldemar Klassen ◽  
Edward A. Evans ◽  
Yungcong Li ◽  
Merlyn Codallo

Mulching in vegetable cultivation has been widely used to conserve water and improve yield. Field experiments with four treatments, including yard waste compost combined with plastic mulches in raised beds for winter fresh market bell peppers (Capsicum annuum L.), were conducted at two experimental sites [Pine Island Farm (PIF) and Tropical Research and Education Center (TREC)] in Miami-Dade county for two different years each. The treatments were: 1) control (PM): plastic mulch alone; 2) MC33: fumigation of the soil with a mixture of methyl bromide and chloropicrin and covered with plastic mulch; 3) herbicide/OM: organic mulch sprayed with herbicides (S-metolachlor and napropamide) without plastic mulch; and 4) PM/OM: organic mulch covered by plastic mulch. The treatment of PM/OM at both experimental sites in 2 years each increased the total marketable yields of bell pepper by 1.5- to 3.2-fold, total extra large fruit yields by 2.0- to 5.7-fold, and total large fruit yields by 1.4- to 2.6-fold, respectively, on average compared with the control, although some exceptions occurred between the two years at the TREC site. Under most circumstances at both experimental sites in two different years each, the PM/OM treatment also improved the total marketable yield and fruit quality (such as extra large fruits) for the first two harvests, which shows a preference to provide winter fresh market vegetables to meet a high demand. The economic benefit by PM/OM was the greatest among all the treatments. The results suggest that the application of organic mulch combined with plastic mulch can improve bell pepper yield and quality as a result of the improvement of soil fertility, especially the early harvests of winter fresh market fruits, which has shown a potential in the development of sustainable agriculture.


2013 ◽  
Vol 27 (4) ◽  
pp. 741-746 ◽  
Author(s):  
Ryan A. Pekarek ◽  
David W. Monks ◽  
Katherine M. Jennings ◽  
Greg D. Hoyt

Greenhouse and field studies were conducted to evaluate bell pepper tolerance to the sulfonylurea herbicides imazosulfuron and thifensulfuron-methyl. Imazosulfuron was applied at 56, 112, 224, 336, or 448 g ai ha−1. Thifensulfuron-methyl was applied at 2.6, 5.3, 10.5, 21.0, or 31.6 g ai ha−1. In the greenhouse over 2 yr, bell pepper injury due to imazosulfuron POST ranged from 12 to 27%. Reductions in plant height and numbers of nodes, buds, flowers, and fruits were generally minor or not observed. Injury from thifensulfuron-methyl POST ranged from 40 to 60% in the greenhouse. Similar trends were observed for leaf chlorosis and distortion. Thifensulfuron-methyl tended to decrease numbers of buds, flowers, and fruits in the greenhouse. In the field at three sites, bell pepper injury due to imazosulfuron applied POST-directed (POST-DIR) was less than 10% at all rating times, and height and yield were not affected. Total and marketable yield averaged 40,300 and 35,810 kg ha−1, respectively, across environments and years. Bell pepper injury from thifensulfuron-methyl applied POST-DIR in the field was less than 20% with all rates and less than 10% when rates less than 10.6 g ai ha−1 thifensulfuron-methyl were applied. Bell pepper stand (plants ha−1) or height was not affected by thifensulfuron-methyl. Thifensulfuron-methyl did not affect total bell pepper yield (39,310 kg ha−1 averaged across environments); however, reductions in Fancy grade yield were observed. No. 1 and cull yield grades tended to increase with increasing thifensulfuron-methyl rate, apparently compensating for lost Fancy yield.


Sign in / Sign up

Export Citation Format

Share Document