scholarly journals Acid Phosphatase Activity in Gingival Crevicular Fluid During Human Orthodontic Tooth Movement

2015 ◽  
Vol 8 (october Spl Edition) ◽  
pp. 403-408 ◽  
Author(s):  
Arif Yezdani
2002 ◽  
Vol 122 (5) ◽  
pp. 548-556 ◽  
Author(s):  
Giuseppe Perinetti ◽  
Michele Paolantonio ◽  
Michele D'Attilio ◽  
Domenico D'Archivio ◽  
Domenico Tripodi ◽  
...  

2019 ◽  
Vol 24 (2) ◽  
pp. 40.e1-40.e22 ◽  
Author(s):  
Priyanka Kapoor ◽  
Nitika Monga ◽  
Om Prakash Kharbanda ◽  
Sunil Kapila ◽  
Ragini Miglani ◽  
...  

Abstract Objective: Orthodontic force application releases multiple enzymes in gingival crevicular fluid (GCF) for activation, resorption, reversal, deposition of osseous elements and extracellular matrix degradation. The current systematic review critically evaluated all existing evidence on enzymes in orthodontic tooth movement. Methods: Literature was searched with predetermined search strategy on electronic databases (PubMed, Scopus, Embase), along with hand search. Results: Initial search identified 652 studies, shortlisted to 52 studies based on PRISMA. Quality assessment further led to final inclusion of 48 studies (13 moderately and 35 highly sensitive studies). Primary outcomes are significant upregulation in GCF levels of enzymes-aspartate aminotransferase (AST), alkaline phosphatase (ALP), matrix metalloproteinases (MMPs), lactate dehydrogenase (LDH), β-glucuronidase (βG), tartrate resistant acid phosphatase (TRAP), acid phosphatase (ACP) and down regulation in cathepsin B (Cb). Site specificity is shown by ALP, TRAP, AST, LDH, MMP9 with levels at compression site increasing earlier and in higher quantities compared with tension site. ALP levels are higher at tension site only in retention. A positive correlation of LDH, ALP and AST is also observed with increasing orthodontic force magnitude. Conclusions: A strong evidence of variation in enzymes (ALP, AST, ACP TRAP, LDH, MMPs, Cb) in GCF is found in association with different magnitude, stages and sites of orthodontic force application.


2021 ◽  
Vol 11 (2) ◽  
pp. 521
Author(s):  
Simina Chelărescu ◽  
Petra Șurlin ◽  
Mioara Decusară ◽  
Mădălina Oprică ◽  
Eugen Bud ◽  
...  

Background: The crevicular fluid analysis represents a useful diagnosis tool, with the help of which noninvasive cellular metabolic activity can be analyzed. The aim of the study is to investigate comparatively IL1β and IL6 in the gingival crevicular fluid of clinically healthy adolescents and young adults during the acute phase of orthodontic treatment. Methods: Gingival crevicular fluid was collected from 20 patients (aged between 11 and 28) undergoing orthodontic treatment. Measurements were taken before (T0) and after 24 h after distalization forces were activated (T1). IL1β and IL 6 were analyzed using Elisa tests. The statistical tests used were two-sided t tests. Results: Between the two time periods there was a significant raise both in the crevicular fluid rate (0.57 µL at T0 vs. 0.95 µL at T1, p = 0.001) and in IL1β levels (15.67 pg/µL at T0 vs. 27.94 pg/µL at T1, p = 0.009). We were able to identify IL6 only in a third of the sites. There is a significantly increased level of ILβ at T1 in adolescents, more than in young adults (42.96 pg/µL vs. 17.93 pg/µL, p = 0.006). Conclusions: In the early stage of orthodontic treatment, the periodontal tissues of adolescents are more responsive to orthodontic forces than those of young adults.


2021 ◽  
Vol 10 (7) ◽  
pp. 1405
Author(s):  
Fabrizia d’Apuzzo ◽  
Ludovica Nucci ◽  
Ines Delfino ◽  
Marianna Portaccio ◽  
Giuseppe Minervini ◽  
...  

Optical vibrational techniques show a high potentiality in many biomedical fields for their characteristics of high sensitivity in revealing detailed information on composition, structure, and molecular interaction with reduced analysis time. In the last years, we have used these techniques for investigating gingival crevicular fluid (GCF) and periodontal ligament (PDL) during orthodontic tooth treatment. The analysis with Raman and infrared signals of GCF and PDL samples highlighted that different days of orthodontic force application causes modifications in the molecular secondary structure at specific wavenumbers related to the Amide I, Amide III, CH deformation, and CH3/CH2. In the present review, we report the most relevant results and a brief description of the experimental techniques and data analysis procedure in order to evidence that the vibrational spectroscopies could be a potential useful tool for an immediate monitoring of the individual patient’s response to the orthodontic tooth movement, aiming to more personalized treatment reducing any side effects.


Sign in / Sign up

Export Citation Format

Share Document