scholarly journals Application Extended Vogel-Tammann-Fulcher Equation for soybean oil

2021 ◽  
Vol 37 (6) ◽  
pp. 1287-1294
Author(s):  
Ioana Stanciu ◽  
Noureddine Ouerfelli

Mathematical models that describe the variation of soybean oil viscosity with temperature according to the recent WLF and VTF (or VFT) equations and traditionally by the Arrhenius equation. The Arrhenius equation shows that the viscosity of the oil is proportional to the absolute temperature and is determined by the activation energy parameter. In Arrhenius' equation the absolute temperature is replaced by T + b where both adjustable T and b are in ° C. The mathematical models described by the equations WLF and VTF, are equal to each other. All three equations are in the same model when used for experimental data of temperature-viscosity dependence, they give exactly the same very high regression coefficient.

1872 ◽  
Vol 7 ◽  
pp. 597-602 ◽  
Author(s):  
Tait

For some time back I have been endeavouring to prove, by experiment, through great ranges of temperature, the result announced by me in December last, viz., that the electro-motive force of a thermo-electric circuit is in general, unless the temperature be very high, a parabolic function of the absolute temperature of either junction, that of the other being maintained constant.


1966 ◽  
Vol 21 (3) ◽  
pp. 274-276
Author(s):  
C.-A. Sjöblom ◽  
J. Andersson

Diffusion of silver into Pyrex glass from an AgNO3 melt was studied with a radioactive tracer technique in the temperature interval 216—354 °C. The results can be described by an ARRHENIUS’ equation D=6.0 x10-4 exp ( — 20500/R T) cm2S-1, where R is the gas constant in cal mole-1 degree-1 and T is the absolute temperature.


The specific heats of three paramagnetic salts, neodymium magnesium nitrate, manganous ammonium sulphate and ferric ammonium alum, have been measured at temperatures below 1°K using the method of γ -ray heating. The temperature measurements were made in the first instance in terms of the magnetic susceptibilities of the salts, the relation of the susceptibility to the absolute temperature having been determined for each salt in earlier experiments. The γ -ray heatings gave the specific heat in arbitrary units. The absolute values of the specific heats were found by extrapolating the results of paramagnetic relaxation measurements at higher temperatures. The measured specific heat of neodymium magnesium nitrate is compared with the value calculated from paramagnetic resonance data, and good agreement is found.


1973 ◽  
Vol 95 (2) ◽  
pp. 236-241
Author(s):  
T. F. Ford ◽  
C. R. Singleterry

Many relationships between viscosity or its reciprocal, fluidity, and temperature have been proposed for liquids. None except the empirically modified ASTM chart have proven satisfactory over extended temperature ranges. We here note that by plotting the kinematic fluidity (φkin) against the square of the absolute temperature (deg K2) we obtain linear relationships for a wide variety of organic liquids at kinematic viscosities less than about 1.67 centistokes (or fluidities above about 0.60 reciprocal centistokes). The generality of the relationship appears to justify the use of the equation, φkin=a+bT2, as an interpolation formula for organic liquids in the low viscosity region.


2021 ◽  
Vol 67 (No. 8) ◽  
pp. 305-315
Author(s):  
Dejan Živkov ◽  
Marijana Joksimović ◽  
Suzana Balaban

In this paper, we evaluate the downside risk of six major agricultural commodities – corn, wheat, soybeans, soybean meal, soybean oil and oats. For research purposes, we first use an optimal generalised autoregressive conditional heteroscedasticity (GARCH) model to create residuals, which we later use for measuring downside risks via parametric and semiparametric approaches. Modified value-at-risk (mVaR) and modified conditional value-at-risk (mCVaR) provide more accurate downside risk results than do ordinary value-at-risk (VaR) and conditional value-at-risk (CVaR). We report that soybean oil has the lowest mVaR and mCVaR because it has two very favourable features – skewness around zero and low kurtosis. The second-best commodity is soybeans. The worst-performing downside risk results are in wheat and oats, primarily because of their very high kurtosis values. On the basis of the results, we propose to investors and various agents involved with these agricultural assets that they reduce the risk of loss by combining these assets with other financial or commodity assets that have low risk.


2021 ◽  
Vol 33 (2) ◽  
pp. 9-19
Author(s):  
V. VIJAYAKUMAR ◽  

The measured thermal radiation from a material surface will, in general, have a wave length (\lambda) dependent scale-factor to the Planck profile (PT) from the contributions of the emissivity (Є\lambda) of the surface, the response function (A\lambda) of the measurement setup, and the emission via non-Plank processes. For obtaining the absolute temperature from such a profile, a procedure that take care of these dependencies and which relay on a temperature grid searchis proposed. In the procedure, the deviation between the Plank profiles at various temperatures and the measured spectrum that is made equal to it at a selected wavelength, by scaling, is used. The response function (A\lambda) is eliminated at the measurement stage and the polynomial dependence of the remnant scale factor mostly dominated by Є\lambda) i s extracted from the measured spectrum by identifying its optimal \lambda dependence. It is shown that when such a computation is carried out over a temperature grid, the absolute temperature can be identified from the minimum of the above deviation. Here, search for T and Є\lambda) d elinked, unlike in the leastsquare approaches that are normally employed. Code that implements the procedure is tested with simulated Planck profile to which different viable values of Є\lambda) a nd noise is incorporated. It shown that if the \lambda dependence of scale-factor is not too high, the absolute temperature can be recovered. A large \lambda dependent scale-factor and the consequent possible error in the temperature obtained can also be identified.


2021 ◽  
Vol 302 ◽  
pp. 01009
Author(s):  
Chanatip Dejkajorn ◽  
Panawan Suttiarporn ◽  
Hussanai Sukkathanyawat ◽  
Kittisak Wichianwat ◽  
Saichon Sriphan ◽  
...  

Spent bleaching earth (SBE) which is generated from bleaching process is a valuable industrial waste of edible vegetable oil production because of residual edible vegetable oil absorbed. The residual oil in spent bleaching earth can be recovered and reused for application in the industries such as the production of biodiesel and lubricant. Currently, microwave-assisted extraction (MAE) technique is widely used because this method has a shorter extraction time and less solvent consumption when compared with traditional methods. In this study, MAE combined with solvent reflux was optimized using solvent screening experiments and response surface methodology (RSM) to obtain the highest yield of MAE extraction of residual soybean oil from spent bleaching earth. The extraction yield of residual soybean oil obtained from selected solvent were hexane-ethanol mixture (2:1 v/v, 10.19%) > hexane-ethanol mixture (1:1 v/v, 10.00%) >hexane-ethanol mixture (1:2 v/v, 9.98%) > hexane-ethanol mixture (1:3 v/v, 9.83%) > hexane-ethanol mixture (3:1 v/v, 8.59%) > hexane (8.17%) > acetone (7.73%). The regression coefficient (R-squared = 0.9852) expresses the accuracy of the regression and indicates the relationship between experimental data and predicted result, with high regression coefficient close to 1, which is remarkably desired. The experiment conditions for optimal MAE extraction of residual soybean oil from SBE were hexane-ethanol mixture (2:1 v/v), liquid to solid ratio 15.56:1 mL/g, extraction time 12.22 min, and microwave power 350 W. Under such conditions, the highest predicted value of the extraction yield of residual soybean oil was 10.43%.


2003 ◽  
Vol 83 (1) ◽  
pp. 15-30 ◽  
Author(s):  
Goran Andjelkovic

The urban heat island, as a phenomenon due to the higher air temperature in the cities as compared to their immediate surroundings, represents the most important consequence of the urbanization influence on the topoclimate. As compared to the smaller cities in its surroundings, Belgrade's average annual temperature is from 0,4 to 1,0 ?C higher (period 1961-1990). A very liable index of the Belgrade's heat island is the air temperature measured at the airport in Surcin. In the period from 1971-1990. average annual air temperature at the airport was 11,2 ?C, and in the city center it was 0,7 ?C higher. Belgrade has a higher absolute minimal temperature than its surroundings during every month. In the last climatic period the absolute temperature minimum in Belgrade was even 5,4 ?C higher than the highest value measured within this parameter in its wider surroundings (Veliko Gradiste -26,4 ?C). In the above mentioned twenty years period the absolute air temperature minimum in Surcin was -26,0 ?C, and in the city center only -18,2 ?C. The number of the frosty days at the airport was 77,8, and in Belgrade 58,2. Although the heat island of Belgrade was formed together with formation of the city, it was more evident at the beginning of the 20th century (0,4 ?C). During the next five to six decades a faster intensity growth was recorded (up to 0,9 ?C). This coincides with the period of the population growth as well as with development of the city activities, industry above all. During one year the intensity of the Belgrade's heat island reached its maximum in winter. In January the city, as compared to Surcin, was warmer for about 1,0 ?C, and in September for only 0,1 ?C. The daily variations of the heat island are such that it reaches its highest intensity during the evening hours (at 9 p.m. 0,9 ?C). If the average values of the extreme daily temperatures are being examined, one can see a distinct difference: average city minimums are 1,5 ?C higher than the airport minimums, while the maximums are only 0,2 ?C higher. During winter, in concrete anticyclonic conditions, it can be 10 ?C warmer in the city than in the immediate surroundings. Together with the perennial growth of heat island intensity, its "space range" also expands. The space structure of the heat island is very distinct. Exceptions in the temperature values between certain points of measurements in the winter morning hours can go up to 6-8 ?C.


1992 ◽  
Vol 9 ◽  
pp. 297-298
Author(s):  
G. Sironi ◽  
G. Bonelli ◽  
M. Gervasi

AbstractWe are carrying on measurements of the absolute temperature of the CBR at various frequencies near and below 1 GHz, looking for so far undetected deviations from a planckian spectrum. The amplitude and frequency of those distortions can give precious information about the history of the Universe.


Thermodynamic measurements have been made at temperatures below 1°K, obtained by the method of magnetic cooling, on copper potassium sulphate and on a diluted copper Tutton salt. A study has been made of the field- dependence (for small fields) of the adiabatic susceptibility of the cooled and thermally isolated salt, the measurements covering the range of temperature from 1°K down to 0.05°K for copper potassium sulphate, and to 0.025° K for the dilute salt. From these measurements the entropy and magnetic susceptibility are determined as functions of the absolute temperature. It is concluded that for both salts the susceptibility follows a Curie-Weiss law, the values of ∆ being 0.034 and 0.0048º K respectively; the specific heats are of the form ∆ / T 2 , the values found for A being 6.1x10 -4 R for copper potassium sulphate and 1.98x10 -4 R for the dilute salt.Deviations from this behaviour in a ferromagnetic direction are found for copper potassium sulphate below 0.07° K.


Sign in / Sign up

Export Citation Format

Share Document