scholarly journals An Inhibitor of the Mating Disruption Effect of (Z)-11-Tetradecenyl Acetate on Pandemis heparana (Tortricidae: Tortricinae)

1996 ◽  
Vol 31 (4) ◽  
pp. 475-480 ◽  
Author(s):  
Makoto MINAMISHIMA ◽  
Hajime SUGIE ◽  
Fumiaki MOCHIZUKI ◽  
Hiroshi NOGUCHII



2000 ◽  
Vol 132 (3) ◽  
pp. 345-351 ◽  
Author(s):  
Gary L. DeBarr ◽  
James L. Hanula ◽  
Christine G. Niwa ◽  
John C. Nord

AbstractSynthetic sex pheromones released in a loblolly pine, Pinus taeda L. (Pinaceae), seed orchard interfered with the ability of male coneworm moths, Dioryctria Zeller spp. (Lepidoptera: Pyralidae), to locate traps baited with sex pheromones or live females. Pherocon 1C® traps baited with synthetic pheromones or live conspecific females were hung near the center of two 1.2-ha circular plots during emergence of Dioryctria amatella (Hulst), Dioryctria disclusa (Heinrich), and Dioryctria merkeli (Mutuura and Munroe). In a paired design, trap catches for the mating-disruption treatment with synthetic pheromone dispensers consisting of three polyvinyl chloride rods placed in every tree were compared with the control treatment. Treatments were alternated at intervals of 2–3 d. Trap catches of D. amatella were reduced by 91% when plots were treated with 2.5 g/ha of Z-11-hexadencenyl acetate. Catches were reduced by 99.5% for D. disclusa and by 97% for D. merkeli when plots were treated with 12.5 g/ha of Z-9-tetradecenyl acetate, whereas catches of D. amatella were unaffected by this mating-disruption treatment. Daily disappearance of Z-9-tetradecenyl acetate from the dispensers averaged 0.46 g/ha or less. Manually placing dispensers on nylon lines in the tops of trees was an effective method for releasing synthetic Dioryctria pheromones in the orchard. These data suggest it may be feasible to prevent mating of Dioryctria spp. in pine seed orchards by using synthetic pheromones for mating disruption, but large-scale tests will be required to demonstrate cone protection.



2007 ◽  
Vol 13 (3) ◽  
Author(s):  
I. Újvári ◽  
I. J. Holb

The study was aimed to study that how mating disruption by hand applied dispensers can reduce the number of damage caused by Cydia pomonella, Adoxophyes orana and Pandemis heparana in four integrated and organic apple orchards. In the first orchard (Gacsály), protection against moth caterpillars ensured by IPM and conventional production systems were equally good, but worse than that of the orchard part where mating disruption was applied by 1000 dispensers/ha. In second orchard (Nyírbogdány), the highest incidence of codling moth damage was measured in the hilly part (17%), while in the plot where 440 dispensers/ha pheromone dosage was applied, the damage incidence was 11%. The smallest damage incidence was at the flat part, where 666 dispensers /ha was applied. In the third and fourth orchards (Eperjeske), codling moth damage on fruits was below 7% in the larger and smaller orchards where 1000 dispensers/ha was applied. At Eperjeske, the codling moth damage increased by 32.3% in the field treated with Bacillus thuringiensis product but without using mating disruption. The results verified that the use of 1000 dispensers/ha as suggested by the manufactures is essential, especially in the first year of application. The results also suggested that better results can be achieved in flat areas and the larger plot size also enables a more efficient reduction of the damage.



1977 ◽  
Vol 33 (11) ◽  
pp. 1423-1424 ◽  
Author(s):  
E. Arsura ◽  
A. Capizzi ◽  
P. Piccardi ◽  
Pia Spinelli
Keyword(s):  


Insects ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 343
Author(s):  
Carolina Ballesteros ◽  
Alda Romero ◽  
María Colomba Castro ◽  
Sofía Miranda ◽  
Jan Bergmann ◽  
...  

Pseudococcus calceolariae, the citrophilous mealybug, is a species of economic importance. Mating disruption (MD) is a potential control tool. During 2017–2020, trials were conducted to evaluate the potential of P. calceolariae MD in an apple and a tangerine orchard. Two pheromone doses, 6.32 g/ha (2017–2018) and 9.45 g/ha (2019–2020), were tested. The intermediate season (2018–2019) was evaluated without pheromone renewal to study the persistence of the pheromone effect. Male captures in pheromone traps, mealybug population/plant, percentage of infested fruit at harvest and mating disruption index (MDI) were recorded regularly. In both orchards, in the first season, male captures were significantly lower in MD plots compared to control plots, with an MDI > 94% in the first month after pheromone deployment. During the second season, significantly lower male captures in MD plots were still observed, with an average MDI of 80%. At the third season, male captures were again significant lower in MD than control plots shortly after pheromone applications. In both orchards, population by visual inspection and infested fruits were very low, without differences between MD and control plots. These results show the potential use of mating disruption for the control of P. calceolariae.



2020 ◽  
Vol 20 (6) ◽  
Author(s):  
Abeysinghe Mudiyanselage Prabodha Sammani ◽  
Dissanayaka Mudiyanselage Saman Kumara Dissanayaka ◽  
Leanage Kanaka Wolly Wijayaratne ◽  
William Robert Morrison

Abstract The almond moth Cadra cautella (Walker), a key pest of storage facilities, is difficult to manage using synthetic chemicals. Pheromone-based management methods remain a high priority due to advantages over conventional management practices, which typically use insecticides. Cadra cautella females release a blend of pheromone including (Z, E)-9,12-tetradecadienyl acetate (ZETA) and (Z)-9-tetradecadien-1-yl acetate (ZTA). The effect of these components on mating of C. cautella and how response varies with the population density and sex ratio remain unknown. In this study, the mating status of C. cautella was studied inside mating cages under different ratios of ZETA and ZTA diluted in hexane and at different population sizes either with equal or unequal sex ratio. The lowest percentage of mated females (highest mating disruption [MD] effects), corresponding to roughly 12.5%, was produced by a 5:1 and 3.3:1 ratio of ZETA:ZTA. Populations with equal sex ratio showed the lowest percentage of mated females, at 20% and 12.5% under lower and higher density, respectively. The next lowest percentage of mated females was produced when the sex ratio was set to 1: 2 and 2:1 male:female, with just 25% and 22.5% of moths mated, respectively. This study shows that mating status of C. cautella is influenced by ZETA:ZTA ratio, sex ratio, and population size. This current knowledge would have useful implications for mating disruption programs.



Insects ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 177
Author(s):  
Aline Moreira Dias ◽  
Miguel Borges ◽  
Maria Carolina Blassioli Moraes ◽  
Matheus Lorran Figueira Coelho ◽  
Andrej Čokl ◽  
...  

Stink bugs are major pests in diverse crops around the world. Pest management strategies based on insect behavioral manipulation could help to develop biorational management strategies of stink bugs. Insect mating disruption using vibratory signals is an approach with high potential for pest management. The objective of this work was to investigate the effect of conspecific female rival signals on the mating behavior and copulation of three stink bug species to establish their potential for mating disruption. Previously recorded female rival signals were played back to bean plants where pairs of the Neotropical brown stink bug, Euschistus heros, and two green stink bugs, Chinavia ubica and Chinavia impicticornis were placed. Vibratory communication and mating behavior were recorded for each pair throughout the experimental time (20 min). Female rival signals show a disrupting effect on the reproductive behavior of three conspecific investigated stink bug species. This effect was more clearly expressed in E. heros and C. ubica than in C. impicticornis. The likelihood of copulating in pairs placed on control plants, without rival signals, increased 29.41 times in E. heros, 4.6 times in C. ubica and 1.71 times in C. impicticornis. However, in the last case, the effect of female rivalry signals in copulation was not significant. The effect of mating disruption of female rival signals of the three stink bug species may originate from the observed reduction in specific vibratory communication signals emitted, which influences the duet formation and further development of different phases of mating behavior. Our results suggest that female rival signals have potential for application in manipulation and disruption of mating behavior of stink bugs. Further work needs to focus on the effects of female rival signals used in long duration experiments and also their interactions with chemical communication of stink bugs.



2017 ◽  
Vol 91 (2) ◽  
pp. 639-650 ◽  
Author(s):  
Glenn P. Svensson ◽  
Hong-Lei Wang ◽  
Erling V. Jirle ◽  
Olle Rosenberg ◽  
Ilme Liblikas ◽  
...  


2010 ◽  
Vol 142 (2) ◽  
pp. 135-142 ◽  
Author(s):  
Peter J. Landolt ◽  
D. Thomas Lowery ◽  
Lawrence C. Wright ◽  
Constance Smithhisler ◽  
Christelle Gúedot ◽  
...  

AbstractLarvae of Abagrotis orbis (Grote) (Lepidoptera: Noctuidae) are climbing cutworms and can damage grapevines, Vitis vinifera L. (Vitaceae), in early spring by consuming expanding buds. A sex attractant would be useful for monitoring this insect in commercial vineyards. (Z)-7-Tetradecenyl acetate and (Z)-11-hexadecenyl acetate were found in extracts of female abdominal tips. In multiple field experiments, male A. orbis were captured in traps baited with a combination of these two chemicals but not in traps baited with either chemical alone. Males were trapped from mid-September to early October in south-central Washington and south-central British Columbia. Other noctuid moths (Mamestra configurata Walker, Xestia c-nigrum (L.), and Feltia jaculifera (Guenée)) were also captured in traps baited with the A. orbis pheromone and may complicate the use of this lure to monitor A. orbis. Abagrotis discoidalis (Grote) was captured in traps baited with (Z)-7-tetradecenyl acetate but not in traps baited with the two chemicals together.



Sign in / Sign up

Export Citation Format

Share Document