Evaluation of Shake-and-Catch Methods on Harvesting of Tall Spindle Apples

2020 ◽  
Vol 63 (4) ◽  
pp. 857-863
Author(s):  
Haiqian Xing ◽  
Shaochun Ma ◽  
Ming Liu ◽  
Menglong Wang ◽  
Yi Wei ◽  
...  

HighlightsBoth frequency and amplitude were influencing factors in analyzing the fruit removal efficiency and fruit damage.This research focused on tall spindle ‘Fuji’ apple trees, which enriched the study of the variety and architecture resources of apple trees.The advice for shake-and-catch harvesting was based on the analysis of amplitude and frequency from the perspective of energy consumption.Abstract. Almost all fresh-market apples are picked manually, and these apples rank among the most labor-intensive fruit crops to produce. Due to declining labor supply and rising labor costs, fresh-market apple growers are seeking mechanical harvesting solutions. Shake-and-catch is a potential method that has been well studied. However, because of fruit damage, this method cannot be widely used for fresh-market apples. The primary goal of this study was to investigate how the physical properties of the fruit tree and the shaker parameters affect fruit removal efficiency and fruit damage in an effort to help growers find solutions to the above-mentioned issues. A test system was developed, and its performance was evaluated in certain shaking modes. Based on the experimental results, the physical properties of the tree (length and diameter of limb, length and diameter of twig, and apple weight) and the frequency and amplitude of the shaker influenced the effectiveness of fruit detachment. When the amplitude of the shaker was 14.3 mm and the frequency was less than 15 Hz, the length of the twig had the greatest effect on fruit harvesting. However, with increasing frequency and amplitude, the effect of tree properties on fruit harvesting declined, and amplitude had a more significant effect on fruit harvesting than frequency. Moreover, the fruit removal rate reached 91.43% when the amplitude was 14.3 mm and the frequency was 20 Hz. The results of this study contribute to the development of an effective mechanical harvester that is adapted to tall spindle apple trees. Keywords: Amplitude, Apple fresh market, Frequency, Physical properties, Shake-and-catch, Tall spindle.

2019 ◽  
Vol 35 (2) ◽  
pp. 175-183 ◽  
Author(s):  
Long He ◽  
Xin Zhang ◽  
Yunxiang Ye ◽  
Manoj Karkee ◽  
Qin Zhang

Abstract. With adopting the modern high-density tree architectures, localized shake-and-catch harvesting is becoming more promising for fresh market apples. To investigate the shaking inputs for an effective harvesting system, a multi-tier shake-and-catch harvesting platform was developed and evaluated in a commercial orchard. The platform composes of a shaker and two three-tier catching surfaces. Performance test was conducted in ‘Jazz’ apple trees trained to a vertical fruiting wall architecture (two horizontal branches at each tier). Two harvesting sections were defined in the test trees, namely, Section I - two neighboring branches at the same tier from two adjacent trees; and Section II - two branches at the same tier of a tree. For Section I, shaking was applied to the middle of each branch (location P1), and for Section II, shaking was applied at the location close to the trunk (location P2). Shaking frequency was set to 20 Hz, and two shaking durations (i.e., 5 and 2 s) were used. In the test, the catching angle relative to the horizontal plate was set to 15°. The results indicated that the fruit removal efficiencies (2nd to 4th tiers of trees were used in the analysis) were 76.6% and 78.1% for shaking at middle of each branch in 2 and 5 s shaking, respectively; those numbers were 86.3% and 89.5% for shaking at location P2. The percentage of marketable fruits were 89.7% and 90.6% for the Section I shaking in two durations, and 84.5% and 84.4% in the Section II shaking. Overall, this study revealed that 2 s shaking duration is sufficient to remove majority of fruits in the tested variety, and the section II shaking had higher overall fruit removal efficiency but also caused slightly more fruit damage. Keywords: Fresh market apples, Fruit quality, Fruit removal efficiency, Mechanical harvesting, Multi-tier shake-and-catch.


HortScience ◽  
2015 ◽  
Vol 50 (8) ◽  
pp. 1178-1182 ◽  
Author(s):  
Long He ◽  
Jianfeng Zhou ◽  
Qin Zhang ◽  
Manoj Karkee

A study on multipass harvesting using a mechanical harvesting prototype was proposed for mechanical harvesting of fresh market sweet cherries. Fruit damage rate, fruit removal rate, and fruit maturity level were three of the measures used to compare the performance of the multipass harvesting method against single-pass harvesting. The multipass harvesting was conducted in four consecutive days with short duration of 2.5 seconds at each day, while the single-pass harvesting was one-time harvesting with long duration of 10 seconds at a single day. To generate baseline information for comparison, single-pass harvestings were performed on the first and the last days of the multipass harvesting. Fruit maturity level was determined by comparing the fruit skin color against a standard color chart with seven color levels. Field test results showed that the percentage of under-mature fruit (maturity levels ≤ 5) was substantially lower with multipass harvesting than that with day 1 single-pass harvesting. Similarly, the percentage of over-mature fruit (maturity level 7) was noticeably lower with multipass harvesting than that with day 4 single-pass harvesting. Multipass harvesting achieved a fruit removal rate of 83.4% ± 10.3% and a harvest-induced fruit damage rate of 5.0% ± 4.4%. The corresponding fruit removal rates from single-pass harvesting tests were 48.0% ± 16.1% on day 1 and 66.7% ± 16.2% day 4. Harvest-induced fruit damage rates with single-pass harvesting were 20.1% ± 9.9% on day 1 and 11.8% ± 6.0% on day 4. The results supported the hypothesis that multipass of short-duration shaking offer a potential to achieve a higher overall harvesting efficiency with better fruit quality, and therefore could lead to an optimal solution for mechanical harvesting of fresh market sweet cherries. It is noted that comprehensive economic analysis will be necessary to establish commercial viability of the system in comparison with single-pass solutions.


2020 ◽  
Vol 63 (6) ◽  
pp. 1759-1771
Author(s):  
Xin Zhang ◽  
Long He ◽  
Manoj Karkee ◽  
Matthew David Whiting ◽  
Qin Zhang

HighlightsThree shaking methods and vibratory harvesting systems were evaluated and compared.Multi-year field evaluations were performed with up to six cultivars trained to formal architectures.The updated semi-automated system achieved the highest fruit removal efficiency and the best fruit quality.Abstract. Apple is the most economically important agricultural crop in Washington State. In 2018, Washington State produced ~3.3 billion kg of apple, accounting for approximately 63% of U.S. production. Fresh-market apple is currently harvested manually, requiring large numbers seasonal semi-skilled workers for a small harvest window. To overcome the increasing challenges of uncertain labor availability and raising labor costs, a promising mechanical harvesting system, using a targeted shake-and-catch approach, is under development at Washington State University. This study evaluated the system by analyzing its fruit harvest efficiency and fruit quality with three shaking methods, i.e., continuous non-linear, continuous linear, and intermittent linear shaking, on up to six apple cultivars trained to formal tree architectures. Results showed that intermittent linear shaking achieved 90% fruit removal efficiency for ‘Scifresh’ cultivar, while continuous linear shaking achieved only 63% removal efficiency for ‘Gala’. This study also compared three vibratory systems: a hand-held system, a hydraulically driven system, and a semi-automated hydraulic system. The semi-automated system achieved the highest fruit removal efficiency (90%), followed by the hand-held (87%) and hydraulic (84%) systems, mainly due to the different shaking methods employed. However, the differences were statistically insignificant. Fruit catching efficiency varied among the harvesting systems, with the hand-held system achieving the highest efficiency (97%), followed by the hydraulic (91%) and semi-automated (88%) systems. Among the three tested technologies, the prototype semi-automated system achieved the highest level of mechanization, as well as high fruit removal efficiency and the best fruit quality. Because the semi-automated system did not include an auto-positioning function, positioning its shaker head took about eight times longer (~103 s) than the actual shaking time (~13 s), which suggests that a fully automated system is desirable to further increase productivity. This study showed that the shake-and-catch approach has great potential for practical adoption in harvesting of fresh-market apple and therefore can have a positive economic impact on the U.S. apple industry. Keywords: Automation in apple production, Bulk mechanical harvest, Semi-automated system, Shaking method, Time efficiency.


2018 ◽  
Vol 61 (5) ◽  
pp. 1565-1576 ◽  
Author(s):  
Xin Zhang ◽  
Long He ◽  
Yaqoob Majeed ◽  
Matthew David Whiting ◽  
Manoj Karkee ◽  
...  

Abstract. The state of Washington is the biggest fresh market apple ( Borkh.) producer in the U.S., and the state’s annual apple production has exceeded 60% of the national production. Due to the extensive labor requirements for harvesting fresh market apples, there is burgeoning demand for mechanical harvest solutions. Our transdisciplinary studies on mechanical harvest systems for apples have shown that fruit removal efficiency (FRE) with a vibratory system can be improved with precision canopy management. In this study, we evaluated the effect of precision pruning strategies on FRE in two groups (106 and 107, respectively) of randomly selected horizontal branches of ‘Jazz/M.9’ apple trees in a commercial orchard. Fruiting lateral branches were pruned to either shorter than 15 cm (guideline 1, G1) or 23 cm (guideline 2, G2). Harvest tests were conducted using a shake-and-catch harvester prototype developed by Washington State University with a fixed vibrating frequency of 20 Hz and shaking duration of 5 s. FRE for branches treated with G1 was significantly higher (91%) than FRE for branches treated with G2 (81%). We recorded a negative relationship between FRE and lateral shoot length. FRE was up to 98% when shoots were shorter than 5 cm, and FRE was only 56% for shoots of 25 cm or longer. We developed a shoot diameter-to-length index (S-index) to better understand the effect of shoot size on FRE. FRE was as high as 98% when the S-index was greater than 0.15. In addition, mechanically harvested fruit quality was assessed by categorizing the fruit into Extra Fancy, Fancy, and Downgrade fresh market classes based on USDA standards; however, no significant difference was found between the two treated groups. These results suggest that pruning lateral fruiting branches to less than 15 cm or to an S-index greater than 0.03 is required to achieve FRE of 85% with no negative impacts on fruit quality. Keywords: Canopy management, Fresh market fruit, Fruit removal efficiency, Mechanical harvest, Shoot pruning severity.


2010 ◽  
Vol 20 (2) ◽  
pp. 409-414 ◽  
Author(s):  
T. Auxt Baugher ◽  
J. Schupp ◽  
K. Ellis ◽  
J. Remcheck ◽  
E. Winzeler ◽  
...  

Hand thinning is a necessary and costly management practice in peach (Prunus persica) production. Stone fruit producers are finding it increasingly difficult to find a workforce to manually thin fruit crops, and the cost of farm labor is increasing. A new “hybrid” string thinner prototype designed to adjust crop load in vase or angled tree canopies was evaluated in processing and fresh fruit plantings in varying production systems in four U.S. growing regions in 2009. Data were uniformly collected across regions to determine blossom removal rate, fruit set, labor required for follow-up green fruit hand thinning, fruit size distribution at harvest, yield, and economic impact. String thinner trials with the variable tree forms demonstrated reduced labor costs compared with hand-thinned controls and increased crop value due to a larger distribution of fruit in marketable and higher market value sizes. Blossom removal ranged from 17% to 56%, hand thinning requirement was reduced by 19% to 100%, and fruit yield and size distribution improved in at least one string-thinning treatment per experiment. Net economic impact at optimum tractor and spindle speeds was $462 to $1490 and $264 to $934 per acre for processing and fresh market peaches, respectively. Case study interviews of growers who thinned a total of 154 acres indicated that commercial adoption of string-thinning technology would likely have positive impacts on the work place environment.


1990 ◽  
Vol 115 (3) ◽  
pp. 368-374
Author(s):  
Terence L. Robinson ◽  
William F. Millier ◽  
James A. Throop ◽  
Stephen G. Carpenter ◽  
Alan N. Lakso

Mature `Empire' and `Redchief Delicious' apple trees (Malus domestica Borkh.) trained to a Y-shaped trellis (Y/M.26) or trained as pyramid-shaped central leaders (CL/M.7) were mechanically harvested with the Cornell trunk recoil-impact shaker during 4 years. With `Empire', fruit removal from the Y/M.26 trees (85% to 90%) was significantly less than from the CL/M.7 trees (95% to 97%). With `Delicious' there were no differences in fruit removal (90% to 95%) between the two tree forms in any year. When the catching pad was on the ground, fruit grade based on damage was only slightly better for the Y/M.26 trees than for the CL/M.7 trees. When the catching pad was raised up near the Y/M.26 canopy, fruit grade was significantly improved for the Y/M.26 trees and was better than the CL/M.7 trees. Fruit grade for both cultivars ranged from 83% to 94% Extra Fancy with 5% to 16% culls for the Y/M.26 trees and from 74% to 88% Extra Fancy and 11% to 21% culls for the CL/M.7 trees. Skin punctures, skin breaks, and number of large and small bruises were lower and the percentage of nondamaged fruit was higher with the Y/M.26 trees when the pads were close to the canopy than when the pads were on the ground. The CL/M.7 trees had higher levels of all types of fruit damage than did the Y/M.26 trees. Damaged fruit from the CL/M.7 trees was mainly from the top half of the tree, while fruit from lower-tier scaffold branches had low levels of damage. Mechanically harvested fruit from the Y/M.26 trees had lower incidences of fruit rot and flesh breakdown after a 6-month storage period than did fruit from the CL/M.7 trees. Stem pulling was high with both systems and averaged 60% for `Delicious' and 30% for `Empire'. The advantage of the single plane Y-trellis system for mechanical harvesting appears to be that the catching pads can be placed close to the fruit, thereby reducing fruit damage.


Author(s):  
Joseph R. Davidson ◽  
Changki Mo

The fresh market apple industry currently relies on manual labor for all harvesting activities. The lack of mechanical harvesting technologies is a serious concern because of rising labor costs and increasingly uncertain labor availability. Researchers have been working for several decades to develop mechanical harvesters for tree fruit. The two fruit removal methods considered include mass mechanical harvesters and selective harvesting with robotics technology. Whereas mass mechanical harvesters have demonstrated unacceptable damage rates, robotic systems have been limited by insufficient speed and robustness. This paper describes the design and analysis of a novel underactuated end-effector fabricated for the robotic harvesting of tree fruit. The device has been optimized around a set of target tasks, the most critical being speed, low complexity, suitability for a highly variable field environment, and the replication of hand picking so as to minimize fruit damage. Development of the end-effector has been facilitated by a thorough study of the dynamic forces involved during the manual harvesting of apples. The end-effector produces a spherical power grasp with a normal force distribution and picking sequence replicating selected human patterns. An underactuated, tendon-driven device with compliant flexure joints has been adopted to improve system performance in the presence of position errors as well as enhance robustness to variable fruit size, shape, and orientation. The prototype end-effector also uses minimal sensors and incorporates open-loop control to reduce complexity and improve picking speed. This paper presents the theoretical analysis of the end-effector kinematics and discusses the selection of key geometric parameters. Experiments have been conducted to determine the normal forces developed during grasping of the apple. Results indicate that open-loop, feedforward control can be used to produce optimal normal force patterns.


2014 ◽  
Vol 703 ◽  
pp. 171-174
Author(s):  
Bing Wang ◽  
Yi Xiao ◽  
Shou Hui Tong ◽  
Lan Fang ◽  
Da Hai You ◽  
...  

Improved step-feed de-nitrification progress combined with biological fluidized bed was introduced in this study. The progress had good performance and capacity of de-nitrification and organic matter. The experiment result showed that the de-nitrification efficiency of the improved biological fluidized bed with step-feed process was higher than the fluidized bed A/O process under the same water quality and the operating conditions. When the influent proportion of each segment was equal, the system showed good nitrogen removal efficiency with the change of influent C/N ratio, HRT and sludge return ratio. The removal rate of TN reached up to 88.2%. It showed that the simultaneous nitrification and de-nitrification phenomenon happened in the aerobic zone. The nitrogen removal mechanism was also studied.


2010 ◽  
Vol 113-116 ◽  
pp. 2201-2207 ◽  
Author(s):  
Jun Yin ◽  
Lei Wu ◽  
Ke Zhao ◽  
Yu Juan Yu

In this article, analysis the start-up of A2/O humic activated sludge system phosphorus removal efficiency and the characteristics of anaerobic phosphorus release, aerobic phosphorus uptake, sludge activity and their change in the Series Technologies process. The results show that A2/O humic activated sludge system phosphorus removal rate stabilized at 90.7% ~ 97.6%. Sludge activity except for anoxic zone 2 increased, along the process showed a gradual decrease trend.


BioResources ◽  
2010 ◽  
Vol 6 (1) ◽  
pp. 447-463 ◽  
Author(s):  
Puneet Pathak ◽  
Nishi K. Bhardwaj ◽  
Ajay K. Singh

The utilization of post-consumer papers in the production of new paper products is increasing all over the world in recent years. Recycling of photocopier paper is a major problem due to difficulty in removal of non-impact ink. Enzymes offer potential advantages in ecofriendly deinking of recovered paper. In this study the deinking of photocopier paper was examined using chemicals and a commercial cellulase enzyme. Parameters of deinking experiments were optimized for hydrapulping. The ink was removed by flotation and washing processes. Then these parameters were compared in terms of ink removal ability of the process, as well as optical and strength properties of the deinked paper. The application of enzymatic deinking improved ink removal efficiency by 24.6% and freeness by 21.6% with a reduction in drainage time of 11.5% in comparison to those obtained with chemical deinking. The physical properties, namely burst index and tensile index, were observed to improve by 15.3% and 2.7%, respectively and brightness and tear index decreased by 2.1% and 21.9%, respectively. Results of deinking efficiency of photocopier paper showed that the enzyme used in the present work performed better than the conventional chemicals used for deinking.


Sign in / Sign up

Export Citation Format

Share Document