Investigation of an Experimental Laser Sensor-Guided Spray Control System for Greenhouse Variable-Rate Applications

2019 ◽  
Vol 62 (4) ◽  
pp. 899-911
Author(s):  
Tingting Yan ◽  
Heping Zhu ◽  
Li Sun ◽  
Xiaochan Wang ◽  
Peter Ling

Abstract. Precision variable-rate spraying technology is needed for controlled-environment plant production in greenhouses. An experimental spray system for greenhouse applications was developed for real-time control of individual nozzle outputs. The system mainly consisted of a high-speed laser scanning sensor, 12 individual variable-rate nozzles, an embedded computer, a spray control unit, and a 3.6 m long mobile spray boom. Each nozzle was coupled with a pulse-width modulated solenoid valve to discharge sprays at variable rates based on target presence and plant canopy structure. Laboratory tests were conducted to evaluate the accuracy of the spray control system in respect to spray delay time, nozzle activation, and spray volume using four target objects of different regular geometrical shapes and surface textures and two artificial plants of different canopy structures. Other experimental variables included three detection heights from 0.5 to 1.0 m and five sensor travel speeds from 1.6 to 4.8 km h-1. A high-speed video camera was used to determine the delay time and nozzle activation in discharging sprays on target objects after the laser sensor had detected the objects. The detection height and travel speed were found to have slight influence on the timing of nozzle activation. The nozzles started spraying in a range between 33 and 83 mm before reaching the target objects and stopped spraying between 13 and 84 mm after passing the objects, ensuring that the objects were fully covered by the spray. Spray volume corresponded to the object sizes well, and the spray control system performed with higher accuracy at lower travel speeds. Differences between the calculated spray volume based on the sensor detection and the actual spray volume ranged from 1.9 to 2.7 mL per object among all tested objects. The variable-rate control system reduced spray volume by 29.3% to 51.4% for all the objects compared with conventional constant-rate spraying. At the same time, the nozzles could be activated precisely by the object presence. Consequently, this experimental laser-guided system was implemented on a boom system in a commercial greenhouse for future investigations of its accuracy in variable-rate spraying to save pesticides, water, and nutrients. Keywords: Automation, Intelligent sprayer, Pesticide, Precision spray technology, Boom spray equipment.

Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 4060 ◽  
Author(s):  
Tingting Yan ◽  
Xiaochan Wang ◽  
Heping Zhu ◽  
Peter Ling

Canopy edge profile detection is a critical component of plant recognition in variable-rate spray control systems. The accuracy of a high-speed 270° radial laser sensor was evaluated in detecting the surface edge profiles of six complex-shaped objects. These objects were toy balls with a pink smooth surface, light brown rectangular cardboard boxes, black and red texture surfaced basketballs, white smooth cylinders, and two different sized artificial plants. Evaluations included reconstructed three-dimensional (3-D) images for the object surfaces with the data acquired from the laser sensor at four different detection heights (0.25, 0.50, 0.75, and 1.00 m) above each object, five sensor travel speeds (1.6, 2.4, 3.2, 4.0, and 4.8 km h−1), and 8 to 15 horizontal distances to the sensor ranging from 0 to 3.5 m. Edge profiles of the six objects detected with the laser sensor were compared with images taken with a digital camera. The edge similarity score (ESS) was significantly affected by the horizontal distances of the objects, and the influence became weaker when the objects were placed closer to each other. The detection heights and travel speeds also influenced the ESS slightly. The overall average ESS ranged from 0.38 to 0.95 for all the objects under all the test conditions, thereby providing baseline information for the integration of the laser sensor into future development of greenhouse variable-rate spray systems to improve pesticide, irrigation, and nutrition application efficiencies through watering booms.


Author(s):  
W.F. Marshall ◽  
K. Oegema ◽  
J. Nunnari ◽  
A.F. Straight ◽  
D.A. Agard ◽  
...  

The ability to image cells in three dimensions has brought about a revolution in biological microscopy, enabling many questions to be asked which would be inaccessible without this capability. There are currently two major methods of three dimensional microscopy: laser-scanning confocal microscopy and widefield-deconvolution microscopy. The method of widefield-deconvolution uses a cooled CCD to acquire images from a standard widefield microscope, and then computationally removes out of focus blur. Using such a scheme, it is easy to acquire time-lapse 3D images of living cells without killing them, and to do so for multiple wavelengths (using computer-controlled filter wheels). Thus, it is now not only feasible, but routine, to perform five dimensional microscopy (three spatial dimensions, plus time, plus wavelength).Widefield-deconvolution has several advantages over confocal microscopy. The two main advantages are high speed of acquisition (because there is no scanning, a single optical section is acquired at a time by using a cooled CCD camera) and the use of low excitation light levels Excitation intensity can be much lower than in a confocal microscope for three reasons: 1) longer exposures can be taken since the entire 512x512 image plane is acquired in parallel, so that dwell time is not an issue, 2) the higher quantum efficiently of a CCD detect over those typically used in confocal microscopy (although this is expected to change due to advances in confocal detector technology), and 3) because no pinhole is used to reject light, a much larger fraction of the emitted light is collected. Thus we can typically acquire images with thousands of photons per pixel using a mercury lamp, instead of a laser, for illumination. The use of low excitation light is critical for living samples, and also reduces bleaching. The high speed of widefield microscopy is also essential for time-lapse 3D microscopy, since one must acquire images quickly enough to resolve interesting events.


CICTP 2020 ◽  
2020 ◽  
Author(s):  
Jing Shi ◽  
Qiyuan Peng ◽  
Ling Liu

2012 ◽  
Vol 132 (3) ◽  
pp. 347-356 ◽  
Author(s):  
Yuta Nabata ◽  
Tatsuya Nakazaki ◽  
Tokoku Ogata ◽  
Kiyoshi Ohishi ◽  
Toshimasa Miyazaki ◽  
...  

2015 ◽  
Vol 46 (3) ◽  
pp. 259-287
Author(s):  
Viktor Andreevich Anikin ◽  
Oleg Vladimirovich Animitsa ◽  
Vladimir Mikhailovich Kuvshinov ◽  
Veniamin Aleksandrovich Leontiev
Keyword(s):  

2020 ◽  
Vol 38 (8A) ◽  
pp. 1187-1199
Author(s):  
Qaed M. Ali ◽  
Mohammed M. Ezzalden

BLDC motors are characterized by electronic commutation, which is performed by using an electric three-phase inverter. The direct control system of the BLDC motor consists of double loops; including the inner-loop for current regulating and outer-loop for speed control. The operation of the current controller requires feedback of motor currents; the conventional current controller uses two current sensors on the ac side of the inverter to measure the currents of two phases, while the third current would be accordingly calculated. These two sensors should have the same characteristics, to achieve balanced current measurements. It should be noted that the sensitivity of these sensors changes with time. In the case of one sensor fails, both of them must be replaced. To overcome this problem, it is preferable to use one sensor instead of two. The proposed control system is based on a deadbeat predictive controller, which is used to regulate the DC current of the BLDC motor. Such a controller can be considered as digital controller mode, which has fast response, high precision and can be easily implemented with microprocessor. The proposed control system has been simulated using Matlab software, and the system is tested at a different operating condition such as low speed and high speed.


2010 ◽  
Vol 7 ◽  
pp. 109-117
Author(s):  
O.V. Darintsev ◽  
A.B. Migranov ◽  
B.S. Yudintsev

The article deals with the development of a high-speed sensor system for a mobile robot, used in conjunction with an intelligent method of planning trajectories in conditions of high dynamism of the working space.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Jiang Lan Fan ◽  
Jose A. Rivera ◽  
Wei Sun ◽  
John Peterson ◽  
Henry Haeberle ◽  
...  

AbstractUnderstanding the structure and function of vasculature in the brain requires us to monitor distributed hemodynamics at high spatial and temporal resolution in three-dimensional (3D) volumes in vivo. Currently, a volumetric vasculature imaging method with sub-capillary spatial resolution and blood flow-resolving speed is lacking. Here, using two-photon laser scanning microscopy (TPLSM) with an axially extended Bessel focus, we capture volumetric hemodynamics in the awake mouse brain at a spatiotemporal resolution sufficient for measuring capillary size and blood flow. With Bessel TPLSM, the fluorescence signal of a vessel becomes proportional to its size, which enables convenient intensity-based analysis of vessel dilation and constriction dynamics in large volumes. We observe entrainment of vasodilation and vasoconstriction with pupil diameter and measure 3D blood flow at 99 volumes/second. Demonstrating high-throughput monitoring of hemodynamics in the awake brain, we expect Bessel TPLSM to make broad impacts on neurovasculature research.


Sign in / Sign up

Export Citation Format

Share Document