Impact of Dairy Wastewater Irrigation and Manure Application on Soil Structural and Water-Holding Properties

2021 ◽  
Vol 64 (3) ◽  
pp. 857-868
Author(s):  
Taylor C. Pinkerton ◽  
Amjad T. Assi ◽  
Valentini A. Pappa ◽  
Eunsung Kan ◽  
Rabi H. Mohtar

HighlightsQuantitative evaluation was performed of dairy waste on soil water-holding capacity.Considering the soil variability on a farm is significant for management practices.Soil aggregate structure plays a pivotal role in studying the impact of waste reuse.Abstract. The livestock sector contributes about 40% of global agricultural output and uses over 30% of total feed-crop land. The sector’s continuing growth has led to increased technology and larger-scale, commercialized agriculture, and it correlates to growth in by-products and waste, which can compromise the environment and human health. Although organic manure is an excellent soil fertilizer whose nutrient content increases crop yield, untreated and/or overapplied manure pollutes local water resources and can alter soil aggregate structure, potentially affecting soil health and available water. Proper livestock waste management is essential for sustainable food production. Waste reuse strategies exist, with goals such as minimizing freshwater consumption, improving food production, and contributing to energy production, However, each strategy has tradeoffs in environmental, energy, or monetary costs. This study provides a quantitative approach to evaluating waste impact on soil health and helps to better manage irrigation practices and water supply gaps in arid and semi-arid areas by better understanding how management practices affect physical soil health. The TypoSoil apparatus was used to measure and analyze the hydrostructural parameters (water-holding capacity and soil structure) of fine sandy loam (A horizon) and sandy clay (B horizon). Soils from the Texas A&M AgriLife Research Dairy (Stephenville, Texas) were collected and compared with control (untouched) soils. Waste (manure, bedding materials, wash water) was separated into liquid (passed through a natural lagoon treatment process) and solid components (applied as fertilizer). Approximately half the wastewater was reused as wash water, the remainder for irrigation. Although the soil varied substantially between sample locations, a statistically significant difference existed between the control and manure/wastewater applications in both the A and B horizons. Both applications improved plant-available water (AW) in the A horizon (40% and 30%, respectively) but deteriorated AW in the B horizon (25% and 30%). Thus, dairy farm waste is a viable source for agricultural use. Keywords: Available water capacity, Pedostructure, Soil health, Soil shrinkage curve, Soil water characteristic curve.

2019 ◽  
Vol 62 (2) ◽  
pp. 289-301
Author(s):  
Amjad T. Assi ◽  
Rabi H. Mohtar ◽  
Erik F. Braudeau ◽  
Cristine L. S. Morgan

Abstract. The purpose of this study was to evaluate the use of the pedostructure concept to determine the soil available water capacity, specifically the field capacity (FC). Pedostructure describes the soil aggregate structure and its thermodynamic interaction with water. Specifically, this work compared the calculation of soil water-holding properties based on the pedostructure concept with other standard methods for determining FC and permanent wilting point (PWP). The standard methods evaluated were the FAO texture estimate (FAO method), the Saxton-Rawls pedotransfer functions (PTFs method), and the water content at predefined soil suction (330 and 15,000 hPa) as measured with a pressure plate apparatus (PP method). Additionally, two pedostructure methods were assessed: the thermodynamic water retention curve (TWRC method) and the thermodynamic pedostructure (TPC method). Undisturbed loamy fine sand soil from a field in Millican, Texas, was analyzed at both the Ap and E horizons. The results showed that the estimated water content at FC and PWP for the three standard methods and for the TWRC method were in relative agreement. However, the TPC method used characteristic transition points in the modeled contents of different water pools in the soil aggregate and was higher for the Ap horizon, but in agreement with the other methods for the E horizon. For example, for the Ap horizon of the soil analyzed in this study, the FC estimated with the standard and TWRC methods ranged from 0.073 to 0.150 m3H2O m-3soil, while the TPC method estimate was 0.221 m3H2O m-3soil. Overall, the different methods showed good agreement in estimating the available water; however, the results also showed some variations in these estimates. It is clear that the TPC method has advantages over the other methods in considering the soil aggregate structure and modeling the soil water content within the aggregate structure. The thermodynamic nature of the TPC method enabled the use of both the soil shrinkage curve and the water retention curve in a weakly structured soil. It is expected that the TPC method would provide more comprehensive advances in understanding the soil water-holding properties of structured soils with higher clay contents. Keywords: Available water, Field capacity, Pedostructure, Pedotransfer functions, Permanent wilting point.


1988 ◽  
Vol 68 (1) ◽  
pp. 157-163 ◽  
Author(s):  
R. DE JONG ◽  
J. A. SHIELDS

Available water-holding capacity (AWC) maps of Alberta, Saskatchewan and Manitoba were derived from Soil Landscape maps (1:1 million scale) by substituting AWC classes for soil textural classes. The maps provide information required for the geographical interpretation of soil water and crop modelling analyses. Key words: Available water-holding capacity, maps, texture


1984 ◽  
Vol 64 (4) ◽  
pp. 667-680 ◽  
Author(s):  
R. DE JONG ◽  
J. A. SHIELDS ◽  
W. K. SLY

Long-term mean soil water reserves for a spring wheat-fallow rotation in the southern half of Saskatchewan were calculated using the Versatile Soil Moisture Budget. Four different available water-holding capacity classes and climatic data from 53 stations were used as input to the model. Soil water reserve data for the following times, seeding on 1 May in the crop year, at heading on 30 June, and on 1 May in the fallow year, were mapped. These were then combined with an available water-holding capacity map to portray in a single map the combined droughtiness due to climatic and soil attributes. Estimated soil water reserves compared well with measured data from one location in the Brown soil zone. The temporal and spatial changes in water reserves are discussed and related to summerfallowing. The maps provide information for use in making potential grain yield estimates. Key words: Soil water, wheat-fallow rotation, generalized soil areas, Saskatchewan, Versatile soil moisture budget


1985 ◽  
Vol 65 (1) ◽  
pp. 219-223
Author(s):  
R. de JONG ◽  
W. K. SLY

Based on soil water modelling results of 19 stations, averaged long-term soil water reserves on the Canadian Prairies were compared for two soils having available water-holding capacities of 280 and 250 mm. The soil water reserves of the 250-mm capacity soil were 6.5%, 8.7% and 6.2% less than those of the 280-mm capacity soil on 1 May after a fallow year, 30 June heading time and 1 May after a crop year, respectively. The aridity indices for wheat at the soft dough stage for the 250-mm capacity soil ranged from 4% less in the drier part of the Prairies to 7–9% more in the wetter regions as compared to the 280-mm capacity soil. Water deficits for a perennial crop grown on a 280-mm capacity soil could not be used to infer the deficits on a 250-mm capacity soil because of the model’s sensitivity to rainfall distribution with time. Key words: Soil water, modelling, available water-holding capacity


1969 ◽  
Vol 5 (3) ◽  
pp. 167-182 ◽  
Author(s):  
J. C. Hudson

SummaryLarge soil monoliths, extracted undisturbed in 44-gallon oil drums, have been used to assess the available-water capacity, and the relation between the growth of sugarcane and soil water deficit for agricultural soils in Barbados. Constancy of field capacity was studied and the effect of cultivation on the storage of available soil water. Deep montmorillonite clays and oceanic soils had storage capacities greater than 20 cm. of water in an 80 cm. profile, whereas sandy or stony montmorillonite clays and most soils developed from kaolinite clays had capacities less than 11 cm. Cultivation significantly increased the water holding capacity of soils but this was rarely as great as for fabricated composts and the water was never so freely available. The data have been used in decisions about cultivation and irrigation, and as the basis for an ecological grouping of sugar estates according to their probable water balance.


Author(s):  
Harmandeep Singh Chahal

In the present review, farmyard manure is explained as a perfect source of nutrients for plant growth as well as for soil microbiota. It is one of the efficient and effective organic manures. It can provide organic matter to soil microbes as a source of carbon. An increase in microbial population leads to the degradation of pesticides and heavy metals to less harmful compounds. In addition to it, ions of harmful elements get adsorb on organic colloids and become immobile in soil. Application of farmyard manure not only increases the availability of nutrients in the soil but also improves the soil properties like soil structure, water holding capacity, bulk density, cation exchange capacity, etc. Studies revealed that farmyard manure is an excellent organic manure for sustaining good soil health along with achieving desired food production.


2007 ◽  
Vol 87 (4) ◽  
pp. 815-827 ◽  
Author(s):  
C. A. Campbell ◽  
R. P. Zentner ◽  
P. Basnyat ◽  
H. Wang ◽  
F. Selles ◽  
...  

In the semiarid prairie, available water is the most limiting and nitrogen the second most limiting factor influencing crop production. Although numerous studies have been conducted on the effect of management practices on water use efficiency (WUE), most have concentrated on monoculture wheat, the major crop grown in the region. Even those studies dealing with other crop types have mostly been short-term in nature. But precipitation is so variable in amount and distribution that such an assessment is best conducted in long-term experiments. We used the results of a 21-yr experiment, conducted in the Brown soil zone at Swift Current, Saskatchewan, to determine the influence of crop type on WUE, and used the distribution of water and NO3-N in the soil, and N uptake by the crop to assist in interpreting these results. Four crop rotations were compared: summer fallow-wheat-wheat (F-W-W), F-flax-W (F-Flx-W), continuous wheat (Cont W) and wheat-lentil (W-Lent). All received N and P fertilizer based on soil test. In the following presentation, the rotation phase shown in parentheses was the phase referred to. We used water and NO3-N measured in consecutive 0.3-m depth segments to 1.2 m in the soil, taken just prior to seeding and after harvest, and precipitation, to make this assessment. About 10 mm more water was conserved in the F-W-W rotation than in the F-Flx-W system during the 21-mo summer fallow period, and most of this difference in water was located in the 0.3- to 0.9-m depth. Soil water in the profile was 14 mm greater following flax harvest than following wheat harvest (mostly located in 0.6- to 1.2-m depth), because flax produces less biomass and has shorter roots than wheat. At harvest, wheat dried the soil to near the wilting point (154 mm), but flax and lentil left about 10 mm of available water in the profile (mostly in the 0.6- to 1.2-m depth), suggesting shallower rooting depths. Over the 9-mo winter period about 58 mm of water was stored in the soil after wheat and 41 mm after flax. Wheat stubble conserved more overwinter water than flax stubble because of its taller height. Lentil, with its much shorter stubble, conserved about 7 mm less water than wheat during winter. Because flax produces much less biomass and withdraws less N from the soil than wheat, it left more NO3-N in the soil (27 kg ha-1 more at seeding and 23 kg ha-1 more at harvest); most of the extra NO3 was in the 0.3- to 1.2-m depth reflecting flax's shallower roots. During the 9-mo overwinter period, 16 kg ha-1 of NO3-N was mineralized following wheat and 33 kg ha-1 following flax. In the spring, Cont W and stubble wheat in F-W-(W) had about 50% as much soil NO3-N as the W-Lent rotation, reflecting the cumulative benefits of N2 fixation by the pulse crop over the years . By harvest, soil NO3-N under (W)-Lent > W-(Lent) > F-Flx-(W) > F-W-(W) > Cont W. The excess NO3-N in the (W)-Lent compared to W-(Lent) was located in the 0- to 0.6-m depth suggesting excessive fertilizer application to the wheat phase of this rotation and implying a need for agronomists to reassess the criteria used for N recommendations for rotations containing pulse crops. Lentil used as much water as wheat even though its biomass was much less. WUE for wheat grown on summer fallow averaged 8.11 kg ha -1 mm-1, and for wheat grown on stubble 6.9 kg ha-1 mm-1. WUE for wheat was also higher when it followed flax than when it followed wheat. The WUE of flax and lentil averaged 50% and 64%, respectively, of wheat following wheat. A more meaningful way of expressing the efficiency of water use is as precipitation required per unit of produce from the complete cropping system (PUE). The PUE increased with cropping intensity on a yield basis (kg ha-1 mm-1): Cont W (4.6) > W-Lent (4.2) > F-W-W (4.1) > F-Flx-W (2.9) (opposite response to WUE). When PUE was calculated on a dollars produced per rotation basis ($ ha-1 mm-1): W-Lent (1.0) was higher than the other three rotations (0.6 to 0.7). Key words: Soil water, soil nitrate, lentil, flax, wheat, crop rotation, precipitation use efficiency


2021 ◽  
Vol 4 ◽  
Author(s):  
Srinivasulu Ale ◽  
Sushil K. Himanshu ◽  
Steven A. Mauget ◽  
Darren Hudson ◽  
Tim S. Goebel ◽  
...  

In the Texas High Plains (THP), diminishing irrigation well-capacities, and increasing costs of energy and equipment associated with groundwater extraction and application are contributing factors to a transition from irrigated to dryland agriculture. The primary goal of this modeling exercise was to investigate whether and to what extent hypothetical changes in factors putatively associated with soil health would affect dryland cotton (Gossypium hirsutum L.) yields. The factors selected were drainage, surface runoff, soil water holding capacity, soil organic carbon (SOC) and albedo. As a first analysis to evaluate these factors, we used the CROPGRO-Cotton module within the Decision Support System for Agrotechnology Transfer (DSSAT) cropping system model. Specifically, we evaluated the effects of reduced surface runoff, increased soil water holding capacity, and SOC, doubling of the soil albedo through stubble mulching, and of soil drainage by enhancing infiltration with no-tillage/cover crops on yield by adjusting related soil properties. In our analysis, we used mean yields simulated with soil properties of a Pullman clay loam soil at Halfway, TX on the THP as baseline, which were compared to values obtained with the adjusted factors using weather data from 2005 to 2019. Simulated mean yield increased by 27% when the soil water holding capacity was increased by 25 mm, 7% when the runoff curve number was decreased from 73 to 60, 16% when soil albedo was increased from 0.2 to 0.4, and by 58% when the soil drainage factor (fraction day−1) was doubled from 0.2. No significant statistical change in simulated mean yield was calculated when SOC was increased by 1%. Further, effects of a 50 mm pre-plant irrigation were also assessed, simulating limited irrigation in the transition to dryland agriculture that resulted in a statistically insignificant 12% increase in seed-cotton yield. Simultaneous implementation of the four statistically significant individual scenarios (increased water holding capacity, infiltration, albedo, and drainage) resulted in the highest increase (93%) in mean seed-cotton yield. An economic and risk analysis of simulated yields under different scenarios indicated that these factors could reduce revenue risk for dryland cotton producers, with most of the effect from soil drainage improvements.


2001 ◽  
Vol 52 (1) ◽  
pp. 57 ◽  
Author(s):  
S. Asseng ◽  
F. X. Dunin ◽  
I. R. P. Fillery ◽  
D. Tennant ◽  
B. A. Keating

High rates of deep drainage in Western Australia are contributing to groundwater recharge and secondary salinity. Strategies are being sought to increase water use in cropping systems and to reduce deep drainage. Quantifying potential drainage through measurements is hampered by the high degree of complexity of these systems as a result of diverse soil types, a range of crops, and in particular the inherent seasonal variability. Simulation models can provide the appropriate means to extrapolate across time and space. The Agricultural Production Systems Simulator (APSIM) was used to explore the effect of alternative agronomic practices on wheat production and deep drainage for representative soils and rainfall regions of the central wheatbelt of Western Australia. Soil water profiles were reset each year to the lower limit of plant-available water, assuming maximum water use in the previous crop. The long-term simulation studies showed that management practices with N fertiliser directed at yield increase were most effective in achieving these aims in the medium to high rainfall regions. The corresponding effect for drainage reduction was marginal. The small effect on drainage control associated with production increase can be traced to the effect of rainfall distribution with major occurrences of both rainfall and drainage during winter (June–August) coinciding with the lowest potential atmospheric demand for evapotranspiration, in combination with low water-holding capacity soils. Nitrogen-induced increases in crop transpiration were in conjunction with reduced soil evaporation, which increased water use efficiency and occurred mostly after the main drainage period, but had little effect on deep drainage within the season. Similar outcomes of enhanced productivity with minor impact on deep drainage were noted with crops sown at different times and with a hypothetical wheat crop having a deeper rooting system. Simulations without resetting soil water each year enabled the quantification of potential carryover effects on long-term average deep drainage. The carry-over of soil water left behind at crop harvest reduced the water storage capacity of the soil in a subsequent year and could increase long-term deep drainage substantially, depending on soil type. Improved management increased late water use in the high rainfall region, in particular on better water-holding soils, and could largely reduce this carry-over effect. The current wheat-based cropping systems, even with alternative management practices, continue to be a major threat to sustainability on the low water-holding soils in the wheatbelt of Western Australia, as a main cause of secondary salinity.


Author(s):  
Ammal Abukari

Soil moisture has a vital role in the cultivation of crops. Its sufficiency and availability to crop- water supplies depends on the management practices of soil and amount of available water to the soil. This study examines the influence of rice husk biochar on the water holding capacity of soil in the savannah ecological zone of Ghana. Increasing rate of rice husk biochar increased water-holding capacity of soils. 4t/ha rice husk biochar showed higher significant differences among the treatments. It is recommended that 4t/ha rice husk biochar should be applied to increase the water-holding capacity of the soil.


Sign in / Sign up

Export Citation Format

Share Document