scholarly journals Plant diversity and composition at three Imperata grasslands in Bogor, Katingan, and Kupang, Indonesia

2020 ◽  
Vol 21 (6) ◽  
Author(s):  
Didi Usmadi ◽  
JOKO RIDHO WITONO ◽  
RENI LESTARI ◽  
DIDIK WIDYATMOKO ◽  
MAHAT MAGANDHI ◽  
...  

Abstract. Usmadi D, Witono JR, Lestari R, Widyatmoko D, Magandhi M, Robiansyah I, Rachmadiyanto AN, Purnomo DW, Zulkarnaen RN, Rivai RR, Helmanto H, Yudaputra A, Damayanti F. 2020. Plant diversity and composition at three Imperata grasslands in Bogor, Katingan, and Kupang, Indonesia. Biodiversitas 21: 2804-2813. Imperata grassland is among the largest proportions of marginal lands in Indonesia. Despite the dominance of Imperata cylindrica grass, certain plant species are able to compete and live together with this species, suggesting window of opportunity that the grasslands can be restored. Yet, the existing diversity and composition of plants in Imperata grasslands may vary due to differences in climatic and soil conditions. This study aims to determine the plant diversity and composition at three Imperata grasslands in Bogor, Katingan, and Kupang, Indonesia. Data were collected using systematic sampling by establishing quadratic observation plots with size of each plot was 1 x 1 m2. The total number of species found in Imperata grasslands in those three study sites was 81 species, belonging to 68 genera and 30 families. In the Bogor site, the dominant species were Imperata cylindrica, Ageratum conyzoides, and Phyllanthus niruri, while in the Katingan site was dominated by I. cylindrica, Scleria ciliaris, and Cyanthillium cinereum and in the Kupang site was dominated by I. cylindrica and Tridax procumbens. The Imperata grassland in Bogor had low species richness, moderate species diversity, the abundance distribution of each species tends to be uniform, and the occurred species did not tend to dominate. The Katingan and Kupang Imperata grasslands had low species richness, low species diversity, the abundance distribution of each species tends to be uneven, and were more dominated by I. cylindrica. Controlling abundance of I. cylindrica is required in those three research sites in order to stimulate the growth of other plant species, which is in turn to maintain and restore biodiversity.

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
HILMINA ITAWAMERNI ◽  
SAIDA RASNOVI ◽  
ZUMAIDAR ZUMAIDAR

Pinus Jantho Forest (PJF) Nature Reserve has unique characteristics and distinctive ecosystem that plays an important role in the preservation of germplasm and the protection of natural resources. The sustainability of the PJF Nature Reserve is strongly determined by vegetation of its constituents. Therefore, an effort is needed to help its management properly, one of which is by knowing the diversity of plants that make up the community in PJF Nature Reserve. The purpose of this research is to analyze the composition and diversity of plant species in PJF Nature Reserve. Data collection and sampling were done using multiple square method. The plots were laid out by systematic sampling. PJF Nature Reserve composed of 111 species from 46 family. The seedling and understorey have the highest number individuals (1028 in total). Then there are 240 individuals at sapling level, 108 individuals at pole, and 72 individuals for tree.  The Euphorbiaceae family has the largest number of species (11 species). The highest Important Value Index (IVI) for seedlings and understorey, sapling and pole, and tree respectively were Chloranthus elatior (11.09%), Piper aduncum (21.90% and 19.32%), and Pinus merkusii (25.52%). The Diversity Index indicates a high level of plant species diversity (3.25-3.63).


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Daniel K. N’Woueni ◽  
Orou G. Gaoue

AbstractThe conversion of natural systems into farms and agroecosystems is the main cause of biodiversity loss. In human-dominated landscapes, understanding the interactions between agroforestry systems and adjacent natural vegetation is fundamental to developing sustainable agricultural systems. Species can move between these two systems with natural systems providing the regional pool of species that shape the agricultural values and conservation value of the agroforestry systems. We investigated the influence of neighboring natural habitats on traditional agroforestry systems in the buffer zone of Pendjari Biosphere Reserve in Benin to understand the contribution of regional processes on the quality of agroforestry systems. We expected that agroforestry parklands adjacent to natural vegetation with high species diversity will also have higher plant species diversity. We found no similarity in plant species composition between agroforestry systems and adjacent natural habitats. A small proportion of species in adjacent natural habitats were found in agroforestry systems. The proportion of shared species was not significantly influenced by plant diversity in adjacent natural habitats or the distance from the agroforestry systems to the natural adjacent habitat. However, plant diversity in agroforestry systems was strongly associated with site ethnobotanical values indicating that farmers act as a supplemental but severe environmental filter of the regional species pool. Our study suggests that promoting the plantation of plants with high ethnobotanical use-value is a potentially viable strategy for sustainable agriculture and ecological restoration in Biosphere reserves.


Plants ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 369 ◽  
Author(s):  
Araújo ◽  
Moreira ◽  
Falcão ◽  
Borges ◽  
Fagundes ◽  
...  

Host plants may harbor a variable number of galling insect species, with some species being able to harbor a high diversity of these insects, being therefore called superhost plants. In the present study, we tested the hypothesis that the occurrence of superhost plant species of genus Qualea (Vochysiaceae) affects the structure of plant–galling insect ecological networks in Brazilian Cerrado. We sampled a total of 1882 plants grouped in 131 species and 43 families, of which 64 species and 31 families of host plants hosted 112 galling insect species. Our results showed that occurrence of superhosts of genus Qualea increased the linkage density of plant species, number of observed interactions, and the size of plant–galling insect networks and negatively affected the network connectance (but had no effect on the residual connectance). Although the occurrence of Qualea species did not affect the plant species richness, these superhosts increased the species richness and the number of interactions of galling insects. Our study represents a step forward in relation to previous studies that investigated the effects of plant diversity on the plant–insect networks, showing that few superhost plant species alter the structure of plant–herbivore networks, even without having a significant effect on plant diversity.


2020 ◽  
Vol 13 (5) ◽  
pp. 611-620
Author(s):  
Feng-Wei Xu ◽  
Jian-Jun Li ◽  
Li-Ji Wu ◽  
Xiao-Ming Lu ◽  
Wen Xing ◽  
...  

Abstract Aims Long-term heavy grazing reduces plant diversity and ecosystem function by intensifying nitrogen (N) and water limitation. In contrast, the absence of biomass removal can cause species loss by elevating light competition and weakening community stability, which is exacerbated by N and water enrichment. Hence, how to maintain species diversity and community stability is still a huge challenge for sustainable management of worldwide grasslands. Methods We conducted a 4-year manipulated experiment in six long-term grazing blocks to explore combination of resource additions and biomass removal (increased water, N and light availability) on species richness and community stability in semiarid grasslands of Inner Mongolia, China. Important Findings In all blocks treated with the combination of resource additions and biomass removal, primary productivity increased and species richness and community stability were maintained over 4 years of experiment. At both species and plant functional group (PFG) levels, the aboveground biomass of treated plants remained temporally stable in treatments with the combination of N and/or water addition and biomass removal. The maintenance of species richness was primarily caused by the biomass removal, which could increase the amount of light exposure for grasses under resource enrichment. Both species asynchrony and stability of PFGs contributed to the high temporal stability observed in these communities. Our results indicate that management practices of combined resource enrichment with biomass removal, such as grazing or mowing, could not only enhance primary productivity but also maintain plant species diversity, species asynchrony and community stability. Furthermore, as overgrazing-induced degradation and resource enrichment-induced biodiversity loss continue to be major problems worldwide, our findings have important implications for adaptive management in semiarid grasslands and beyond.


2007 ◽  
Vol 87 (3) ◽  
pp. 479-487 ◽  
Author(s):  
M. A. Sanderson ◽  
S. C. Goslee ◽  
K. J. Soder ◽  
R. H. Skinner ◽  
B. F. Tracy ◽  
...  

Grassland farmers face many challenges in pasture management including improving sustainability, reducing inputs of fertilizers and pesticides, and protecting soil resources. In this paper we provide our perspective on managing plant diversity within and among pastures as one tool to aid producers in meeting these challenges. Pasture ecosystems can be highly diverse, with a complex array of organisms contributing to ecosystem functioning. Within the broad range of plant and animal biodiversity in pastures, plant species diversity may be the most amenable to manipulation or management. Reported benefits of plant diversity in grasslands include: increased forage production, greater ecosystem stability in response to disturbance, and reduced invasion by exotic species such as weeds. Some view diversity as a sort of insurance policy where different species contribute in their own time or can take the place of species that fail from stress or mismanagement. Using mixtures of several forages in pastures, in some instances, can improve forage yield and reduce weed invasions. Pasture management for increased plant species diversity, however, is not simply mixing and planting as many forage species as possible. The kinds and amounts of different forage species along with their arrangement within and among pastures at the farm scale are critical features that must be considered. Tools must be developed to determine the appropriate species mixtures for varying soils, landscapes, climate and purposes to fulfill multiple functions for producers. Key words: Grazing ecosystem; forages; diversity; ecosystem function; ecosystem services


Botany ◽  
2008 ◽  
Vol 86 (12) ◽  
pp. 1416-1426 ◽  
Author(s):  
Amy C. Ganguli ◽  
David M. Engle ◽  
Paul M. Mayer ◽  
Eric C. Hellgren

Widespread encroachment of the fire-intolerant species Juniperus virginiana  L. into North American grasslands and savannahs where fire has largely been removed has prompted the need to identify mechanisms driving J. virginiana encroachment. We tested whether encroachment success of J. virginiana is related to plant species diversity and composition across three plant communities. We predicted J. virginiana encroachment success would (i) decrease with increasing diversity, and (ii) J. virginiana encroachment success would be unrelated to species composition. We simulated encroachment by planting J. virginiana seedlings in tallgrass prairie, old-field grassland, and upland oak forest. We used J. virginiana survival and growth as an index of encroachment success and evaluated success as a function of plant community traits (i.e., species richness, species diversity, and species composition). Our results indicated that J. virginiana encroachment success increased with increasing plant richness and diversity. Moreover, growth and survival of J. virginiana seedlings was associated with plant species composition only in the old-field grassland and upland oak forest. These results suggest that greater plant species richness and diversity provide little resistance to J. virginiana encroachment, and the results suggest resource availability and other biotic or abiotic factors are determinants of J. virginiana encroachment success.


2018 ◽  
Author(s):  
Marc W. Schmid ◽  
Terhi Hahl ◽  
Sofia J. van Moorsel ◽  
Cameron Wagg ◽  
Gerlinde B. De Deyn ◽  
...  

AbstractSoil microbes are known to be involved in a number of essential ecosystem processes such as nutrient cycling, plant productivity and the maintenance of plant species diversity. However, how plant species diversity and identity affect soil microbial diversity and community composition is largely unknown. We tested whether, over the course of 11 years, distinct soil bacterial communities developed under plant monocultures and mixtures, and if over this timeframe plants with a monoculture or mixture history changed in the microbial communities they associated with. For eight species, we grew offspring of plants that had been grown for 11 years in the same monocultures or mixtures (monoculture- or mixture-type plants) in pots inoculated with microbes extracted from the monoculture and mixture soils. After five months of growth in the glasshouse, we collected rhizosphere soil from each plant and used 16S-rRNA gene sequencing to determine the community composition and diversity of the bacterial communities. Microbial community structure in the plant rhizosphere was primarily determined by soil legacy (monoculture vs. mixture soil) and by plant species identity, but not by plant legacy (monoculture- vs. mixture-type plants). In seven out of the eight plant species bacterial abundance was larger when inoculated with microbes from mixture soil. We conclude that plant diversity can strongly affect belowground community composition and diversity, feeding back to the assemblage of rhizosphere microbial communities in newly establishing plants. Thereby our work demonstrates that concerns for plant biodiversity loss are also concerns for soil biodiversity loss.


2021 ◽  
Author(s):  
Brian E Sedio ◽  
Marko J Spasojevic ◽  
Jonathan A Myers ◽  
S Joseph Wright ◽  
Maria D Person ◽  
...  

Plant diversity varies immensely over large-scale gradients in temperature, precipitation, and seasonality at global and regional scales. This relationship may be driven in part by climatic variation in the relative importance of abiotic and biotic interactions to the diversity and composition of plant communities. In particular, biotic interactions may become stronger and more host specific with increasing precipitation and temperature, resulting in greater plant species richness in wetter and warmer environments. This hypothesis predicts that the many defensive compounds found in plants’ metabolomes should increase in richness and decrease in interspecific similarity with precipitation, temperature, and plant diversity. To test this prediction, we compared patterns of chemical and morphological trait diversity of 140 woody plant species among seven temperate forests in North America representing 16.2°C variation in mean annual temperature (MAT), 2,115 mm variation in mean annual precipitation (MAP), and from 10 to 68 co-occurring species. We used untargeted metabolomics methods based on data generated with liquid chromatography-tandem mass spectrometry to identify, classify, and compare 13,480 unique foliar metabolites and to quantify the metabolomic similarity of species in each community with respect to the whole metabolome and each of five broad classes of metabolites. In addition, we compiled morphological trait data from existing databases and field surveys for three commonly measured traits (specific leaf area [SLA], wood density, and seed mass) for comparison with foliar metabolomes. We found that chemical defense strategies and growth and allocation strategies reflected by these traits largely represented orthogonal axes of variation. In addition, functional dispersion of SLA increased with MAP, whereas functional richness of wood density and seed mass increased with MAT. In contrast, chemical similarity of co-occurring species decreased with both MAT and MAP, and metabolite richness increased with MAT. Variation in metabolite richness among communities was positively correlated with species richness, but variation in mean chemical similarity was not. Our results are consistent with the hypothesis that plant metabolomes play a more important role in community assembly in wetter and warmer climates, even at temperate latitudes, and suggest that metabolomic traits can provide unique insight to studies of trait-based community assembly.


Sign in / Sign up

Export Citation Format

Share Document