Early Cretaceous Depositional and Structural Development of Wyoming-Idaho-Utah Foreland Basin: ABSTRACT

AAPG Bulletin ◽  
1982 ◽  
Vol 66 ◽  
Author(s):  
Katharine N. Sippel, James G. Schmi
1994 ◽  
Vol 34 ◽  
pp. 1-23
Author(s):  
Ole Valdemar Vejbæk ◽  
Svend Stouge ◽  
Kurt Damtoft Poulsen

The present distribution of Palaeozoic sediments in the Bornholm area is a consequence of several different tectonic regimes during the Phanerozoic eon. This development may be divided into three main evolutionary phases: A Caledonian to Variscian phase encompassing the Lower Palaeozoic sediments. The sediments are assumed originally to have showed a gradual thickness increase towards the Caledonian Deformation Front located to the south. This pre-rift development may be further subdivided into three sub-phases: A period of slow sedimentation on a relatively stable platform as recorded by the uniformly low thicknesses of the Cambrian to Lower Silurian sediments. A period of foreland-type rapid sedimentation commencing in the Llandoverian to Wenlockian, continuing in the Ludlovian and possibly into the Devonian. The period is characterized by /olding and uplift of the Caledonides to the south causing tectonic loading of the foreland and resultant rapid sedimentation in the foreland basin. A period of gravitational collapse causing minor erosion during the Devonian. The transition to the second major phase in the Phanerozaic structural development, during which the Sorgenfrei-Tornquist zone came into existence, is recorded by regional deposition of Carboniferous sediments. These sediments are, however, mostly removed by tater erosion. A syn-rift phase characterized by sedimentation in graben areas and expanding basins commencing in the Rotliegendes and continuing through the Triassic, Jurassic and Lower Cretaceous. This phase was probably initiated by a Late Carboniferous- Early Permian tensional dominated right-lateral wrench fault system within the Sorgenfrei-Tornquist zone. A Post-rift development phase dominated by Late Cretaceous carbonate sedimentation. During Late Cretaceous and Early Tertiary times the Bornholm area was strongly affected by inversion tectonism caused by compressional strike-slip movements. This resulted in reverse faulting and uplift and erosion of former basinal areas. Understanding the two latter phases is important for understanding the present distribution of the Palaeozoic. A key to understanding the hydrocarbon potential of the area is the maturation of the organic matter in the main potential source, the Ordovician Upper Alum Shale. Maturity was mainly achieved during the Silurian to Late Palaeozoic time, and little further maturation took place later. The Upper Alum Shale is accordingly expected to be overmature in the main part of the study area and mature in the Hano Bay Basin. This reflects the assumed primary uniform thickness of the Lower Palaeozoic, with a general thinning towards the northeast. A Caledonian to Variscian phase encompassing the Lower Palaeozoic sediments. The sediments are assumed originally to have showed a gradual thickness increase towards the Caledonian Deformation Front located to the south. This pre-rift development may be further subdivided into three sub-phases: A period of slow sedimentation on a relatively stable platform as recorded by the uniformly low thicknesses of the Cambrian to Lower Silurian sediments. A period of foreland-type rapid sedimentation commencing in the Llandoverian to Wenlockian, continuing in the Ludlovian and possibly into the Devonian. The period is characterized by /olding and uplift of the Caledonides to the south causing tectonic loading of the foreland and resultant rapid sedimentation in the foreland basin. A period of gravitational collapse causing minor erosion during the Devonian. The transition to the second major phase in the Phanerozaic structural development, during which the Sorgenfrei - Tornquist zane came into existence, is recorded by regional deposition of Carboniferous sediments. These sediments are, however, mostly removed by tater erosion. A syn-rift phase characterized by sedimentation in graben areas and expanding basins commencing in the Rotliegendes and continuing through the Triassic, Jurassic and Lower Cretaceous. This phase was probably initiated by a Late Carboniferous- Early Permian tensional dominated right-lateral wrench fault system within the Sorgenfrei-Tornquist zone. A Post-rift development phase dominated by Late Cretaceous carbonate sedimentation. During Late Cretaceous and Early Tertiary times the Bornholm area was strongly affected by inversion tectonism caused by compressional strike-slip movements. This resulted in reverse faulting and uplift and erosion of former basinal areas. Understanding the two latter phases is important for understanding the present distribution of the Palaeozoic. A key to understanding the hydrocarbon potential of thearea is the maturation of the organic matter in the main potential source, the Ordovician Upper Alum Shale. Maturity was mainly achieved during the Silurian to Late Palaeozoic time, and little further maturation took place later. The Upper Alum Shale is accordingly expected to be overmature in the main part of the study area and mature in the Hano Bay Basin. This reflects the assumed primary uniform thickness of the Lower Palaeozoic, with a general thinning towards the northeast.


2021 ◽  
pp. jgs2020-085 ◽  
Author(s):  
Laura Burrel ◽  
Antonio Teixell

Triassic Keuper evaporites have long been recognized as the main detachment level for thrusting in the Pyrenean fold–thrust belts. The deformed Late Cretaceous–Eocene foreland basin of the Southern Pyrenees has structures and stratal geometries that can be interpreted as related to salt tectonics (e.g. unconformities, rapid thickness variations, long-lived growth fans and overturned flaps), although they have been overprinted by shortening and thrusting. Based on field observations and published maps, we build new structural cross-sections reinterpreting two classic transects of the Southern Pyrenees (Noguera Ribagorçana and Noguera Pallaresa river transects). The sequential restoration of the sections explores the variations in structural style, addressing the role of halokinesis in the tectonic and sedimentary development. In the Serres Marginals area, we propose that salt pillows and diapirs started developing locally during the Mesozoic pre-orogenic episode, evolving into a system of salt ridges and intervening synclines filled with early synorogenic sediments. Rapid amplification of folds recorded by widespread latest Cretaceous–Paleocene growth strata is taken as marking the onset of contractional folding in the area. During Pyrenean compression, folding mechanisms transitioned from dominantly halokinetic to a combination of buckling and differential sedimentary loading. Squeezing of salt diapirs and thrust welding occurred as salt ridges were unroofed. We provide new field observations that lead to a reinterpretation of the regional structural development and contribute to the debate about the role of salt tectonics in the Pyrenees.Supplementary material: Table S1, giving the thickness of the main stratigraphic units, is available at https://doi.org/10.6084/m9.figshare.c.5287737


1991 ◽  
Vol 16 ◽  
pp. 31-31
Author(s):  
O. Michelsen ◽  
T.E. Mogensen

The structural development of the Danish Central Trough area from the Carboniferous to the Early Cretaceous was studied to test how far back in geological time a graben development can be justified or proved by data.


Author(s):  
Xu Han ◽  
Jin-Gen Dai ◽  
Jie Lin ◽  
Shi-Ying Xu ◽  
Bo-Rong Liu ◽  
...  

Reconstruction of Cretaceous geological evolution of Tibetan Plateau growth is critical for assessing the effect of India-Asia collision on the formation of its high elevation. However, Cretaceous topographic evolution and geodynamic mechanism in northern Lhasa remain ambiguous. Here we present results from sedimentology, zircon U-Pb ages, and detrital Cr-spinel composition of the Tangza Formation in the western part of northern Lhasa. Sedimentary lithofacies document that orbitolinid foraminifera−limestone beds were deposited in a shallow-marine setting, while clastic rocks accumulated in an alluvial fan during the middle Cretaceous. Zircon U-Pb ages of interbedded volcanic rocks place a robust constraint on the initiation of clastic rock deposition at ca. 106 Ma. Sandstones are enriched lithic fragments with abundant volcanic grains. U-Pb ages of detrital zircon display a prominent age population at 101−130 Ma with a 120 Ma peak. These data indicate that the clastic rocks were mainly derived from northern Lhasa, including an Early Cretaceous magmatic arc. Sedimentary and provenance characteristics are most consistent with deposition in a local foreland basin. The activation of south-vergent local thrusting may be responsible for loading of the Tangza foreland basin. This thrust faulting may be associated with crustal shortening induced by the continuous convergence of Lhasa and Qiangtang since collision initiated during the Early Cretaceous. The initial uplift of western and central parts of northern Lhasa and eastern Gangdese arc occurred at ca. 106 Ma, while the widespread uplift of northern and central Lhasa probably initiated at ca. 92 Ma. The mid−Late Cretaceous uplift in Lhasa was significantly earlier than the early Cenozoic India-Asia collision.


2020 ◽  
Vol 132 (11-12) ◽  
pp. 2489-2516 ◽  
Author(s):  
Timothy F. Lawton ◽  
Jeffrey M. Amato ◽  
Sarah E.K. Machin ◽  
John C. Gilbert ◽  
Spencer G. Lucas

Abstract Subsidence history and sandstone provenance of the Bisbee basin of southwestern New Mexico, southern Arizona, and northern Sonora, Mexico, demonstrate basin evolution from an array of Late Jurassic–Early Cretaceous rift basins to a partitioned middle Cretaceous retroarc foreland basin. The foreland basin contained persistent depocenters that were inherited from the rift basin array and determined patterns of Albian–early Cenomanian sediment routing. Upper Jurassic and Valanginian–Aptian strata were deposited in three narrow extensional basins, termed the Altar-Cucurpe, Huachuca, and Bootheel basins. Initially rapid Late Jurassic subsidence in the basins slowed in the Early Cretaceous, then increased again from mid-Albian through middle Cenomanian time, marking an episode of foreland subsidence. Sandstone composition and detrital zircon provenance indicate different sediment sources in the three basins and demonstrate their continued persistence as depocenters during Albian foreland basin development. Late Jurassic basins received sediment from a nearby magmatic arc that migrated westward with time. Following a 10–15 m.y. depositional hiatus, an Early Cretaceous continental margin arc supplied sediment to the Altar-Cucurpe basin in Sonora as early as ca. 136 Ma, but local sedimentary and basement sources dominated the Huachuca basin of southern Arizona until catchment extension tapped the arc source at ca. 123 Ma. The Bootheel basin of southwestern New Mexico received sediment only from local basement and recycled sedimentary sources with no contemporary arc source evident. During renewed Albian–Cenomanian subsidence, the arc continued to supply volcanic-lithic sand to the Altar-Cucurpe basin, which by then was the foredeep of the foreland basin. Sandstone of the Bootheel basin is more quartzose than the Altar-Cucurpe basin, but uncommon sandstone beds contain neovolcanic lithic fragments and young zircon grains that were transported to the basin as airborne ash. Latest Albian–early Cenomanian U-Pb tuff ages, detrital zircon maximum depositional ages ranging from ca. 102 Ma to 98 Ma, and ammonite fossils all demonstrate equivalence of middle Cretaceous proximal foreland strata of the U.S.-Mexico border region with distal back-bulge strata of the Cordilleran foreland basin. Marine strata buried a former rift shoulder in southwestern New Mexico during late Albian to earliest Cenomanian time (ca. 105–100 Ma), prior to widespread transgression in central New Mexico (ca. 98 Ma). Lateral stratigraphic continuity across the former rift shoulder likely resulted from regional dynamic subsidence following late Albian collision of the Guerrero composite volcanic terrane with Mexico and emplacement of the Farallon slab beneath the U.S.–Mexico border region. Inferred dynamic subsidence in the foreland of southern Arizona and southwestern New Mexico was likely augmented in Sonora by flexural subsidence adjacent to an incipient thrust load driven by collision of the Guerrero superterrane.


2021 ◽  
Vol 91 (11) ◽  
pp. 1188-1205
Author(s):  
Stephen P. Phillips ◽  
John A. Howell ◽  
Adrian J. Hartley ◽  
Magda Chmielewska

ABSTRACT The analysis of downstream changes in ancient fluvial systems can better inform depositional models for foreland-basin systems. Herein we analyze the basal deposits of the Early Cretaceous Cedar Mountain Formation of Utah to better understand the variety of fluvial deposits present and to develop a depositional model for the Sevier foreland basin. We also evaluate the long-held interpretation of a braided origin for these deposits and document numerous examples of point-bar deposition in highly sinuous meandering rivers by analysis of large (20 to 60 km2) plan-view exposures. These plan-view exposures allow comparisons between planform and cross-sectional geometries. The study utilizes outcrop data, virtual outcrop models, and satellite imagery to develop a facies model and analyze the architecture of channel bodies in the Buckhorn Conglomerate and Poison Strip Sandstone of the Cedar Mountain Formation. We document downstream (west to east) decreases in lateral channel migration, sinuosity, channel amalgamation, grain size, and percent of fluvial channel facies (conglomerate and sandstone). Fluvial channel deposits occur arranged into larger stratal bodies: multistory–multilateral channel bodies that are dominantly composed of clast-supported conglomerate in the west to a mix of multistory, multilateral, and isolated channel bodies composed of matrix-supported conglomerate in the east. The median width of highly sinuous point bars is similar across the field area (344 m to 477 m), but the inclusion of narrower (median = 174 m), low-sinuosity bar elements in the east indicates an overall reduction in lateral channel migration and sinuosity downstream. Net-to-gross values range from 100% in much of the western outcrops to as low as 38% in the east. Paleocurrent analysis reveals a transverse (west to east) paleoflow for the study interval that merges with axial (south–north) paleoflow near the Utah–Colorado state line. We estimate 104 m3/s-scale discharge and 106 kilometer-scale drainage area for axial rivers based on paleohydraulic analysis which represents a significant part of the Early Cretaceous continental-scale drainage. The observed downstream trends in lateral channel migration, sinuosity, channel amalgamation, grain size, and net-to-gross for the basal Cedar Mountain Formation are consistent with expected trends for sinuous single-thread distributive fluvial systems and are similar to observed trends in the Jurassic Morrison Formation. Medial (Buckhorn Conglomerate) to distal (Poison Strip Sandstone) zones are preserved and span the forebulge to backbulge depozones of a foreland-basin system. Postulated deposits of the proximal distributive fluvial system have been removed during erosion of the foredeep depozone. The easternmost Poison Strip Sandstone and coeval Burro Canyon Formation represent deposits of an axial system at which western-sourced distributive fluvial systems end. Distributive fluvial systems dominate modern foreland basins, and this study suggests that they may constitute a significant proportion of ancient successions.


Sign in / Sign up

Export Citation Format

Share Document