scholarly journals Palaeozoic tectonic and sedimentary evolution and hyrdrocarbon prospectivity in the Bornholm area

1994 ◽  
Vol 34 ◽  
pp. 1-23
Author(s):  
Ole Valdemar Vejbæk ◽  
Svend Stouge ◽  
Kurt Damtoft Poulsen

The present distribution of Palaeozoic sediments in the Bornholm area is a consequence of several different tectonic regimes during the Phanerozoic eon. This development may be divided into three main evolutionary phases: A Caledonian to Variscian phase encompassing the Lower Palaeozoic sediments. The sediments are assumed originally to have showed a gradual thickness increase towards the Caledonian Deformation Front located to the south. This pre-rift development may be further subdivided into three sub-phases: A period of slow sedimentation on a relatively stable platform as recorded by the uniformly low thicknesses of the Cambrian to Lower Silurian sediments. A period of foreland-type rapid sedimentation commencing in the Llandoverian to Wenlockian, continuing in the Ludlovian and possibly into the Devonian. The period is characterized by /olding and uplift of the Caledonides to the south causing tectonic loading of the foreland and resultant rapid sedimentation in the foreland basin. A period of gravitational collapse causing minor erosion during the Devonian. The transition to the second major phase in the Phanerozaic structural development, during which the Sorgenfrei-Tornquist zone came into existence, is recorded by regional deposition of Carboniferous sediments. These sediments are, however, mostly removed by tater erosion. A syn-rift phase characterized by sedimentation in graben areas and expanding basins commencing in the Rotliegendes and continuing through the Triassic, Jurassic and Lower Cretaceous. This phase was probably initiated by a Late Carboniferous- Early Permian tensional dominated right-lateral wrench fault system within the Sorgenfrei-Tornquist zone. A Post-rift development phase dominated by Late Cretaceous carbonate sedimentation. During Late Cretaceous and Early Tertiary times the Bornholm area was strongly affected by inversion tectonism caused by compressional strike-slip movements. This resulted in reverse faulting and uplift and erosion of former basinal areas. Understanding the two latter phases is important for understanding the present distribution of the Palaeozoic. A key to understanding the hydrocarbon potential of the area is the maturation of the organic matter in the main potential source, the Ordovician Upper Alum Shale. Maturity was mainly achieved during the Silurian to Late Palaeozoic time, and little further maturation took place later. The Upper Alum Shale is accordingly expected to be overmature in the main part of the study area and mature in the Hano Bay Basin. This reflects the assumed primary uniform thickness of the Lower Palaeozoic, with a general thinning towards the northeast. A Caledonian to Variscian phase encompassing the Lower Palaeozoic sediments. The sediments are assumed originally to have showed a gradual thickness increase towards the Caledonian Deformation Front located to the south. This pre-rift development may be further subdivided into three sub-phases: A period of slow sedimentation on a relatively stable platform as recorded by the uniformly low thicknesses of the Cambrian to Lower Silurian sediments. A period of foreland-type rapid sedimentation commencing in the Llandoverian to Wenlockian, continuing in the Ludlovian and possibly into the Devonian. The period is characterized by /olding and uplift of the Caledonides to the south causing tectonic loading of the foreland and resultant rapid sedimentation in the foreland basin. A period of gravitational collapse causing minor erosion during the Devonian. The transition to the second major phase in the Phanerozaic structural development, during which the Sorgenfrei - Tornquist zane came into existence, is recorded by regional deposition of Carboniferous sediments. These sediments are, however, mostly removed by tater erosion. A syn-rift phase characterized by sedimentation in graben areas and expanding basins commencing in the Rotliegendes and continuing through the Triassic, Jurassic and Lower Cretaceous. This phase was probably initiated by a Late Carboniferous- Early Permian tensional dominated right-lateral wrench fault system within the Sorgenfrei-Tornquist zone. A Post-rift development phase dominated by Late Cretaceous carbonate sedimentation. During Late Cretaceous and Early Tertiary times the Bornholm area was strongly affected by inversion tectonism caused by compressional strike-slip movements. This resulted in reverse faulting and uplift and erosion of former basinal areas. Understanding the two latter phases is important for understanding the present distribution of the Palaeozoic. A key to understanding the hydrocarbon potential of thearea is the maturation of the organic matter in the main potential source, the Ordovician Upper Alum Shale. Maturity was mainly achieved during the Silurian to Late Palaeozoic time, and little further maturation took place later. The Upper Alum Shale is accordingly expected to be overmature in the main part of the study area and mature in the Hano Bay Basin. This reflects the assumed primary uniform thickness of the Lower Palaeozoic, with a general thinning towards the northeast.

1993 ◽  
Vol 130 (5) ◽  
pp. 711-724 ◽  
Author(s):  
A. H. Cooper ◽  
D. Millward ◽  
E. W. Johnson ◽  
N. J. Soper

AbstractThe Lake District and smaller Craven inliers of northwest England contain a Lower Palaeozoic sequence deposited on the Gondwanan side of the Iapetus Ocean, close to the junction with the Tornquist Sea. The Tremadoc to Llanvirn Skiddaw and Ingleton groups are deep water assemblages of turbidite, olistostrome and slump deposits, formed at a continental margin. They experienced uplift and erosion as a precursor to the eruption of two largely subaerial Llandeilo-Caradoc volcanic sequences: the tholeiitic Eycott Volcanic Group in the north and the calc–alkaline Borrowdale Volcanic Group in the central Lake District. The volcanic episodes are the earliest part of a major episode of magmatism, extending through to the early Devonian and responsible for a major batholith underpinning the Lake District. Subsidence in an intra-arc rift zone preserved the subaerial volcanic sequences. A marine transgression marks the base of the Windermere Group, which comprises a mixed carbonate–clastic shelf sequence of Ashgill age, passing upwards through the Silurian into a thick, prograding foreland basin sequence of Ludlow turbidites. Deformation of the Lower Palaeozoic sequences was possibly diachronous from north to south. It is attributed to the late Caledonian (Acadian) Orogeny and resulted in folding, cleavage and thrust development. Granitic intrusions, including those at Shap, Skiddaw and beneath the hydrothermal Crummock Water Aureole, are partly syntectonic and were therefore penecontemporaneous with this deformation event. Some thrust faulting post-dates the intrusive phase. Post-deformation Devonian conglomerates are also present locally.


2012 ◽  
Vol 4 (1) ◽  
pp. 507-564
Author(s):  
S. Tavani

Abstract. The Cantabrian Transitional Area (CTA) is located in the eastern portion of the Cantabrian Mountain Range of the northern Spain. It represents the most important internal boundary within the Upper Cretaceous to Cenozoic E–W elongated Pyrenean Orogen. In the south-verging portion of this orogen, the CTA divides the western thick-skinned Cantabrian Domain, which accommodated for a limited portion of the total N–S oriented orogenic shortening, from the Pyrenean realm to the east, where the south-verging frontal structures are characterised by a marked thiN–Skin style of deformation, and significantly contributed to accommodate the total shortening. In the Cantabrian Transitional Area, Cenozoic syn-orogenic left-lateral, right-lateral and reverse dip-slip movements have occurred along different directions, postdating early-orogenic extensional structures. The latter indicate that the southern portion of the study area formed the eastern termination of the northward concave roughly E–W oriented proto Duero Foreland Basin. This basin was flanked to the north by the thick-skinned proto Cantabrian Belt, which included in its easternmost part the northern portion of the Cantabrian Transitional Area. Onset of right-lateral strike-slip tectonics along the WNW-ESE striking Ubiernal-Venatniella Fault System, which locates to the SW of the CTA and crosses the entire Cantabrian Belt and its formerly southern foreland basin, caused the dislocation of the belt-foredeep system. Contextually, thiN–Skinned structures belonging to the eastern domain of the Pyrenean Orogen laterally propagated and incorporated the eastern part of the proto Duero Foreland Basin. Coexistence of right-lateral and reverse movements to the west and to the east, respectively, determined the onset of an intrabelt compression at the boundary between the Cantabrian and Pyrenean domains, which was the ultimate act of the fusion of the two domains into a single orogen. Paradoxically, this fusion has basically occurred due to the penetration of the NW-SE-striking intraplate right-lateral transpressive system of the Iberian Chain into the Cantabrian Domain of the Pyrenean Orogen. Cenozoic right-lateral reactivation of the Ubierna Fault System, in fact, is part of a NW-SE striking intraplate strike-slip transpressive system, which to the south-east includes the Iberian Chain until the Mediterranean Sea and that, in the western termination of the Ubierna Fault System, branches off into three main splay faults, which are the Ventaniella and Leon faults, and the Duero frontal thrust. Taking into account the role of this Cenozoic transpressive system allows to drastically reduce the gap between plate kinematic reconstructions and geological evidences. This implies that, despite the limited amount of displacement, the Iberian Chain and the Ubierna-Ventaniella systems must be elevated to the rank of microplate boundary, which divided two sectors of the Iberian Plate. Accordingly, the intersection between this system and the Pyrenean Orogen, which occurs in the CTA, must be regarded as a triple junction zone.


2016 ◽  
Vol 3 ◽  
pp. 229-291 ◽  
Author(s):  
Alan L. Titus ◽  
Jeffrey G. Eaton ◽  
Joseph Sertich

The Late Cretaceous succession of southern Utah was deposited in an active foreland basin circa 100 to 70 million years ago. Thick siliciclastic units represent a variety of marine, coastal, and alluvial plain environments, but are dominantly terrestrial, and also highly fossiliferous. Conditions for vertebrate fossil preservation appear to have optimized in alluvial plain settings more distant from the coast, and so in general the locus of good preservation of diverse assemblages shifts eastward through the Late Cretaceous. The Middle and Late Campanian record of the Paunsaugunt and Kaiparowits Plateau regions is especially good, exhibiting common soft tissue preservation, and comparable with that of the contemporaneous Judith River and Belly River Groups to the north. Collectively the Cenomanian through Campanian strata of southern Utah hold one of the most complete single region terrestrial vertebrate fossil records in the world.


Author(s):  
Niels Hemmingsen Schovsbo ◽  
Arne Thorshøj Nielsen

The Lower Palaeozoic succession in Scandinavia includes several excellent marine source rocks notably the Alum Shale, the Dicellograptus shale and the Rastrites Shale that have been targets for shale gas exploration since 2008. We here report on samples of these source rocks from cored shallow scientific wells in southern Sweden. The samples contain both free and sorbed hydrocarbon gases with concentrations significantly above the background gas level. The gases consist of a mixture of thermogenic and bacterially derived gas. The latter likely derives from both carbonate reduction and methyl fermentation processes. The presence of both thermogenic and biogenic gas in the Lower Palaeozoic shales is in agreement with results from past and present exploration activities; thermogenic gas is a target in deeply buried, gas-mature shales in southernmost Sweden, Denmark and northern Poland, whereas biogenic gas is a target in shallow, immature-marginally mature shales in south central Sweden. We here document that biogenic gas signatures are present also in gas-mature shallow buried shales in Skåne in southernmost Sweden.


Geosciences ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 23
Author(s):  
Andrea Di Capua ◽  
Federica Barilaro ◽  
Gianluca Groppelli

This work critically reviews the Eocene–Oligocene source-to-sink systems accumulating volcanogenic sequences in the basins around the Alps. Through the years, these volcanogenic sequences have been correlated to the plutonic bodies along the Periadriatic Fault System, the main tectonic lineament running from West to East within the axis of the belt. Starting from the large amounts of data present in literature, for the first time we present an integrated 4D model on the evolution of the sediment pathways that once connected the magmatic sources to the basins. The magmatic systems started to develop during the Eocene in the Alps, supplying detritus to the Adriatic Foredeep. The progradation of volcanogenic sequences in the Northern Alpine Foreland Basin is subsequent and probably was favoured by the migration of the magmatic systems to the North and to the West. At around 30 Ma, the Northern Apennine Foredeep also was fed by large volcanogenic inputs, but the palinspastic reconstruction of the Adriatic Foredeep, together with stratigraphic and petrographic data, allows us to safely exclude the Alps as volcanogenic sources. Beyond the regional case, this review underlines the importance of a solid stratigraphic approach in the reconstruction of the source-to-sink system evolution of any basin.


2021 ◽  
pp. 1-24
Author(s):  
Petros Koutsovitis ◽  
Konstantinos Soukis ◽  
Panagiotis Voudouris ◽  
Stylianos Lozios ◽  
Theodoros Ntaflos ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document