ABSTRACT: Integrated fractured reservoir modelling using geomechanics and flow simulation

AAPG Bulletin ◽  
2000 ◽  
Vol 84 ◽  
Author(s):  
Bourne, Stephen J.1, Joel J. Ita1,
2008 ◽  
Author(s):  
Loic Bazalgette ◽  
Kike Beintema ◽  
Najwa al Yassir ◽  
Peter Swaby ◽  
Pascal D. Richard ◽  
...  

2008 ◽  
Vol 11 (06) ◽  
pp. 1071-1081 ◽  
Author(s):  
Amy Whitaker ◽  
C. Shah Kabir ◽  
Wayne Narr

Summary The extent to which fractures affect fluid pathways is a vital component of understanding and modeling fluid flow in any reservoir. We examined the Wafra Ratawi grainstone for which production extending for 50 years, including recent horizontal drilling, has provided some clues about fractures, but their exact locations, intensity, and overall effect have been elusive. In this study, we find that a limited number of total fractures affect production characteristics of the Ratawi reservoir. Although fractures occur throughout the Wafra field, fracture-influenced reservoir behavior is confined to the periphery of the field where the matrix permeability is low. This work suggests that for the largest part of the field, explicit fractures are not necessary in the next-generation Earth and flow-simulation models. The geologic fracture assessment included seismic fault mapping and fracture interpretation of image logs and cores. Fracture trends are in the northeast and southwest quadrants, and fractures are mineralized toward the south and west of the field. Pressure-falloff tests on some peripheral injectors indicate partial barriers, and most of these wells lie on seismic-scale faults in the reservoir, suggesting partial sealing. A few wells show fractured-reservoir production characteristics, and rate-transient analysis on a few producers indicates localized dual-porosity behavior. Producers proximal to dual-porosity wells display single-porosity behavior, however, to attest to the notion of localized fracture response. The spatially restricted fracture-flow characteristics appear to correlate with fracture or vug zones in a low-permeability reservoir. Presence of fracture-flow behavior was tested by constructing the so-called flow-capacity index (FCI), the ratio of khwell (well test-derived value) to khmatrix (core-derived property). Data from 80 wells showed khmatrix to be consistently higher than khwell, a relationship that suggests insignificant fracture production in these wells. Introduction The Wafra field is in the Partitioned Neutral Zone (PNZ) between Kuwait and Saudi Arabia, as shown in Fig. 1. The field has been producing since the 1950s and has seen renewed drilling activity since the late 1990s, including horizontal drilling and implementation of peripheral water injection (Davis and Habib 1999). The Lower Cretaceous Ratawi formation contains the most reserves of the producing intervals at Wafra. The Ratawi oolite (a misnomer--it is a grainstone) reservoir has variable porosity (5 to 35%) and permeability that ranges from tens to hundreds of md (Longacre and Ginger 1988). The main Wafra structure is a gentle (i.e., interlimb angle >170°), doubly plunging anticline trending north-northwest to south-southeast, which culminates near its northern end. The East Wafra spur is a north-trending branch that extends from the center of the main Wafra structure. As seen in Fig. 1, relief on the Main Wafra structure exceeds that on East Wafra. The Ratawi oolite in the Wafra field has been studied at length, and various authors have reported geologic and engineering elements, leading to reservoir characterization and understanding of reservoir performance. Geologic studies are those of Waite et al. (2000) and Sibley et al. (1997). In contrast, Davis and Habib (1999) presented implementation of peripheral water injection, whereas Chawathé et al. (2006) discussed realignment of injection pattern owing to lack of pressure support in the reservoir interior. Previous studies considered the reservoir to behave like a single-porosity system. But recent image-log fracture interpretations indicate high fracture densities, suggesting that the implementation of a dual-porosity model may be necessary because the high impact of fractures during field development has been recognized in some Middle East reservoirs for more than 50 years (Daniel 1954). Static and dynamic data are required to characterize fracture reservoir behavior accurately (Narr et al. 2006). Geologic description of the fracture system, by use of cores, borehole images, seismic data, and well logs, does not in itself determine whether fractures affect reservoir behavior. While seismic and some image logs were available to locate fractures in the Wafra Ratawi reservoir, no dynamic testing with the specific objective of understanding fracture impact has occurred. So, to determine whether fractures influence oil productivity significantly, we used diagnostic analyses of production data and well tests of available injectors. The assessment of fracture effects in the Ratawi reservoir will be used to guide the next generation of geologic and flow-simulation models. Dynamic data involving pressure and rate have the potential to reveal the influence of open fractures in production performance. Unfortunately, pressure-transient testing on single wells does not always provide conclusive evidence about the presence of fractures with the characteristic dual-porosity dip on the pressure-derivative signature (Bourdet et al. 1989). That is because a correct mixture of matrix/fracture storativity must be present for the characteristic signature to appear (Serra et al. 1983). In practice, interference testing (Beliveau 1989) between wells appears to provide more-definitive clues about interwell connectivity, leading to inference about fractures. In contrast to pressure-transient testing, rate-transient analysis offers the potential to provide the same information without dedicated testing. In this field, all wells are currently on submersible pumps. Consequently, the pump-intake pressure and measured rate provided the necessary data for pressure/rate convolution or rate-transient analysis. We provide the Ratawi-reservoir case study primarily as an example of the integration of diverse geologic and engineering data to develop an assessment of fracture influence on reservoir behavior. It illustrates the use of production-data diagnostic tests to determine fracture influence in the absence of targeted fracture-analysis testing. The workflow can be applied to similar static/dynamic problems, such as fault-transmissivity determination. Secondly, this analysis illustrates the process of deciding that fractures, although present throughout the reservoir, may not lead to widespread fractured-reservoir characteristics (e.g., Allan and Sun 2003).


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Wei Zhang ◽  
Zong Dai ◽  
Bin Gong ◽  
Yahui Wang ◽  
Xiaolin Zhang ◽  
...  

Carbonate reservoirs in the South China Sea mostly contain natural fractures with various length scales and different intensities, which causes great challenges in efficient reservoir modeling and flow simulation. Existing efforts based on dual-porosity and dual-permeability models could not reflect the characteristics of production data in certain wells. To accurately and efficiently characterize multiscale fractures, a hybrid fracture characterization method is proposed. Firstly, fractures are divided into two types according to the geometrical size and interpretation approach. Then, small-scale fractures, characterized mainly by image log interpretations, are modeled by the traditional dual-porosity/dual-permeability (DP) method. And large-scale fractures, which are characterized by seismic interpretations and dominate the flow regime, are modeled by the embedded discrete fracture method (EDFM) to achieve both accuracy and efficiency. Lastly, transmissibilities among these three types of grid mediums are calculated to generate the hybrid DP+EDFM model for flow simulation. The proposed approach is applied to a carbonate, fractured reservoir in the South China Sea. The overall procedure is fast and reliable, and water cut matches of both field and specific wells are dramatically improved. Comparing the simulation results with the conventional DP model, the proposed approach yields much more accurate predictions on rapid water breakthrough and high water cut in fractured reservoirs.


Author(s):  
L. Bazalgette ◽  
K. Beintema ◽  
N. al Yassir ◽  
P. Swaby ◽  
P.D. Richard ◽  
...  

2021 ◽  
pp. petgeo2020-012
Author(s):  
James Mullins ◽  
Helena van der Vegt ◽  
John Howell

The construction of subsurface reservoir models is typically aided by the use of outcrops and modern analogue systems. We show how process- based models of depositional systems help develop and substantiate reservoir architectural concepts. Process-based models can simulate assumptions relating to the physical processes influencing sedimentary deposition, accumulation and erosion on the resultant 3D sediment distribution. In this manner, a complete suite of analogue geometries can be produced by implementing different sets of boundary conditions based on hypotheses of depositional controls. Simulations are therefore not driven by a desired/ defined outcome in the depositional patterns, but their application to date in reservoir modelling workflows has been limited because they cannot be conditioned to data such as well logs or seismic information.In this study a reservoir modelling methodology is presented that addresses this problem using a two-step approach: process-based models producing 3D sediment distributions, which are subsequently used to generate training images for multi-point geostatistics.The approach has been tested on a dataset derived from a well-exposed outcrop from central Utah. The Ferron Sandstone Member includes a shallow marine deltaic interval that has been digitally mapped using a high resolution Unmanned Aerial Vehicle (UAV) survey in 3D to produce a virtual outcrop (VO). The VO was used as the basis to build a semi-deterministic outcrop reference model against which to compare the results of the combined process/Multiple Point Statistics (MPS) geostatistical realizations. Models were compared statically and dynamically by flow simulation.When used with a dense well dataset, the MPS realizations struggle to account for high levels of non-stationarity inherent in the depositional system that are captured in the process-based training image. When trends are extracted from the outcrop analogue and used to condition the simulation, the geologically realistic geometries and spatial relationships from the process-based models are directly imparted onto the modelling domain, whilst simultaneously allowing the facies models to be conditioned to subsurface data.When sense-checked against preserved analogues, this approach reproduces more realistic architectures than traditional, more stochastic techniques.


Author(s):  
Su Jiang ◽  
Mun-Hong Hui ◽  
Louis J. Durlofsky

Data-space inversion (DSI) is a data assimilation procedure that directly generates posterior flow predictions, for time series of interest, without calibrating model parameters. No forward flow simulation is performed in the data assimilation process. DSI instead uses the prior data generated by performing O(1000) simulations on prior geomodel realizations. Data parameterization is useful in the DSI framework as it enables representation of the correlated time-series data quantities in terms of low-dimensional latent-space variables. In this work, a recently developed parameterization based on a recurrent autoencoder (RAE) is applied with DSI for a real naturally fractured reservoir. The parameterization, involving the use of a recurrent neural network and an autoencoder, is able to capture important correlations in the time-series data. RAE training is accomplished using flow simulation results for 1,350 prior model realizations. An ensemble smoother with multiple data assimilation (ESMDA) is applied to provide posterior DSI data samples. The modeling in this work is much more complex than that considered in previous DSI studies as it includes multiple 3D discrete fracture realizations, three-phase flow, tracer injection and production, and complicated field-management logic leading to frequent well shut-in and reopening. Results for the reconstruction of new simulation data (not seen in training), using both the RAE-based parameterization and a simpler approach based on principal component analysis (PCA) with histogram transformation, are presented. The RAE-based procedure is shown to provide better accuracy for these data reconstructions. Detailed posterior DSI results are then presented for a particular “true” model (which is outside the prior ensemble), and summary results are provided for five additional “true” models that are consistent with the prior ensemble. These results again demonstrate the advantages of DSI with RAE-based parameterization for this challenging fractured reservoir case.


2008 ◽  
Author(s):  
Loic Bazalgette ◽  
Kike Beintema ◽  
Najwa al Yassir ◽  
Peter Swaby ◽  
Pascal D. Richard ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document