scholarly journals Data-Space Inversion With a Recurrent Autoencoder for Naturally Fractured Systems

Author(s):  
Su Jiang ◽  
Mun-Hong Hui ◽  
Louis J. Durlofsky

Data-space inversion (DSI) is a data assimilation procedure that directly generates posterior flow predictions, for time series of interest, without calibrating model parameters. No forward flow simulation is performed in the data assimilation process. DSI instead uses the prior data generated by performing O(1000) simulations on prior geomodel realizations. Data parameterization is useful in the DSI framework as it enables representation of the correlated time-series data quantities in terms of low-dimensional latent-space variables. In this work, a recently developed parameterization based on a recurrent autoencoder (RAE) is applied with DSI for a real naturally fractured reservoir. The parameterization, involving the use of a recurrent neural network and an autoencoder, is able to capture important correlations in the time-series data. RAE training is accomplished using flow simulation results for 1,350 prior model realizations. An ensemble smoother with multiple data assimilation (ESMDA) is applied to provide posterior DSI data samples. The modeling in this work is much more complex than that considered in previous DSI studies as it includes multiple 3D discrete fracture realizations, three-phase flow, tracer injection and production, and complicated field-management logic leading to frequent well shut-in and reopening. Results for the reconstruction of new simulation data (not seen in training), using both the RAE-based parameterization and a simpler approach based on principal component analysis (PCA) with histogram transformation, are presented. The RAE-based procedure is shown to provide better accuracy for these data reconstructions. Detailed posterior DSI results are then presented for a particular “true” model (which is outside the prior ensemble), and summary results are provided for five additional “true” models that are consistent with the prior ensemble. These results again demonstrate the advantages of DSI with RAE-based parameterization for this challenging fractured reservoir case.

2007 ◽  
Vol 9 (1) ◽  
pp. 30-41 ◽  
Author(s):  
Nikhil S. Padhye ◽  
Sandra K. Hanneman

The application of cosinor models to long time series requires special attention. With increasing length of the time series, the presence of noise and drifts in rhythm parameters from cycle to cycle lead to rapid deterioration of cosinor models. The sensitivity of amplitude and model-fit to the data length is demonstrated for body temperature data from ambulatory menstrual cycling and menopausal women and from ambulatory male swine. It follows that amplitude comparisons between studies cannot be made independent of consideration of the data length. Cosinor analysis may be carried out on serial-sections of the series for improved model-fit and for tracking changes in rhythm parameters. Noise and drift reduction can also be achieved by folding the series onto a single cycle, which leads to substantial gains in the model-fit but lowers the amplitude. Central values of model parameters are negligibly changed by consideration of the autoregressive nature of residuals.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Jingpei Dan ◽  
Weiren Shi ◽  
Fangyan Dong ◽  
Kaoru Hirota

A time series representation, piecewise trend approximation (PTA), is proposed to improve efficiency of time series data mining in high dimensional large databases. PTA represents time series in concise form while retaining main trends in original time series; the dimensionality of original data is therefore reduced, and the key features are maintained. Different from the representations that based on original data space, PTA transforms original data space into the feature space of ratio between any two consecutive data points in original time series, of which sign and magnitude indicate changing direction and degree of local trend, respectively. Based on the ratio-based feature space, segmentation is performed such that each two conjoint segments have different trends, and then the piecewise segments are approximated by the ratios between the first and last points within the segments. To validate the proposed PTA, it is compared with classical time series representations PAA and APCA on two classical datasets by applying the commonly used K-NN classification algorithm. For ControlChart dataset, PTA outperforms them by 3.55% and 2.33% higher classification accuracy and 8.94% and 7.07% higher for Mixed-BagShapes dataset, respectively. It is indicated that the proposed PTA is effective for high dimensional time series data mining.


2018 ◽  
Vol 2 (2) ◽  
pp. 49-57
Author(s):  
Dwi Yulianti ◽  
I Made Sumertajaya ◽  
Itasia Dina Sulvianti

Generalized space time autoregressive integrated  moving average (GSTARIMA) model is a time series model of multiple variables with spatial and time linkages (space time). GSTARIMA model is an extension of the space time autoregressive integrated moving average (STARIMA) model with the assumption that each location has unique model parameters, thus GSTARIMA model is more flexible than STARIMA model. The purposes of this research are to determine the best model and predict the time series data of rice price on all provincial capitals of Sumatra island using GSTARIMA model. This research used weekly data of rice price on all provincial capitals of Sumatra island from January 2010 to December 2017. The spatial weights used in this research are the inverse distance and queen contiguity. The modeling result shows that the best model is GSTARIMA (1,1,0) with queen contiguity weighted matrix and has the smallest MAPE value of 1.17817 %.


Author(s):  
Sibo Cheng ◽  
Mingming Qiu

AbstractData assimilation techniques are widely used to predict complex dynamical systems with uncertainties, based on time-series observation data. Error covariance matrices modeling is an important element in data assimilation algorithms which can considerably impact the forecasting accuracy. The estimation of these covariances, which usually relies on empirical assumptions and physical constraints, is often imprecise and computationally expensive, especially for systems of large dimensions. In this work, we propose a data-driven approach based on long short term memory (LSTM) recurrent neural networks (RNN) to improve both the accuracy and the efficiency of observation covariance specification in data assimilation for dynamical systems. Learning the covariance matrix from observed/simulated time-series data, the proposed approach does not require any knowledge or assumption about prior error distribution, unlike classical posterior tuning methods. We have compared the novel approach with two state-of-the-art covariance tuning algorithms, namely DI01 and D05, first in a Lorenz dynamical system and then in a 2D shallow water twin experiments framework with different covariance parameterization using ensemble assimilation. This novel method shows significant advantages in observation covariance specification, assimilation accuracy, and computational efficiency.


2020 ◽  
Vol 15 (3) ◽  
pp. 225-237
Author(s):  
Saurabh Kumar ◽  
Jitendra Kumar ◽  
Vikas Kumar Sharma ◽  
Varun Agiwal

This paper deals with the problem of modelling time series data with structural breaks occur at multiple time points that may result in varying order of the model at every structural break. A flexible and generalized class of Autoregressive (AR) models with multiple structural breaks is proposed for modelling in such situations. Estimation of model parameters are discussed in both classical and Bayesian frameworks. Since the joint posterior of the parameters is not analytically tractable, we employ a Markov Chain Monte Carlo method, Gibbs sampling to simulate posterior sample. To verify the order change, a hypotheses test is constructed using posterior probability and compared with that of without breaks. The methodologies proposed here are illustrated by means of simulation study and a real data analysis.


Author(s):  
Michael Hauser ◽  
Yiwei Fu ◽  
Shashi Phoha ◽  
Asok Ray

This paper makes use of long short-term memory (LSTM) neural networks for forecasting probability distributions of time series in terms of discrete symbols that are quantized from real-valued data. The developed framework formulates the forecasting problem into a probabilistic paradigm as hΘ: X × Y → [0, 1] such that ∑y∈YhΘ(x,y)=1, where X is the finite-dimensional state space, Y is the symbol alphabet, and Θ is the set of model parameters. The proposed method is different from standard formulations (e.g., autoregressive moving average (ARMA)) of time series modeling. The main advantage of formulating the problem in the symbolic setting is that density predictions are obtained without any significantly restrictive assumptions (e.g., second-order statistics). The efficacy of the proposed method has been demonstrated by forecasting probability distributions on chaotic time series data collected from a laboratory-scale experimental apparatus. Three neural architectures are compared, each with 100 different combinations of symbol-alphabet size and forecast length, resulting in a comprehensive evaluation of their relative performances.


Author(s):  
Yoesril Ihza Mahendra ◽  
Natalia Damastuti

Prediction of demand for tiger shrimp buyers using data from the company CV. Surya Perdana Benur. The process is carried out with the models in the Autoregressive Integrated Moving Average method. Tiger shrimp is a marine animal that is now widely cultivated by big company in Indonesia. Tiger shrimp has important economic value, so its existence must be maintained as part of Indonesian germplasm. The problem now faced by many tiger shrimp companies is the inadequate availability of goods for consumers. This time series data method is useful for predicting the availability of goods for consumers who want to buy goods at the company CV. Surya Perdana Benur. This time series data method is useful for predicting the availability of goods for consumers who want to buy goods at the company CV. Surya Perdana Benur. Autoregressive (AR), MovingAverage (MA), and Autoregressive Integrated Moving Average (ARIMA) model and will be evaluated through Mean Absolute Percent Error (MAPE). The initial process that will be carried out after the data is processed is model identification, estimation of model parameters, residual inspection, using forecasting models if the model has been fulfilled will be evaluated using MAPE until the results come out 14875.593875 to be able to predict the next buyer demand.


2021 ◽  
Author(s):  
David Hsu ◽  
Mohsen Mazrooyisebdani ◽  
Lucas Alan Sears ◽  
Anshika Singh ◽  
Mateo N Silver ◽  
...  

<p>Linear regression can be applied to time series data to extract model parameters such as the effective force and friction constant matrices of the system. Even highly nonlinear systems can be analyzed by linear regression, if the total amount of data is broken up into shorter “time windows”, so that the dynamics is considered to be piece-wise linear. Traditionally, linear regression has been performed on the equation of motion itself (which approach we refer to as LRX). There has been surprisingly little published on the accuracy and reliability of LRX as applied to time series data. Here we show that linear regression can also be applied to the time correlation function of the dynamical observables (which approach we refer to as LRC), and that this approach is better justified within the context of statistical physics, namely, Zwanzig-Mori theory. We test LRC against LRX on a simple system of two damped harmonic oscillators driven by Gaussian random noise. We find that LRC allows one to improve the signal to noise ratio in a way that is not possible within LRX. Linear regression using time correlation functions (LRC) thus appears to be not only better justified theoretically, but it is more accurate and more versatile than LRX. <b></b></p>


2021 ◽  
Author(s):  
David Hsu ◽  
Mohsen Mazrooyisebdani ◽  
Lucas Alan Sears ◽  
Anshika Singh ◽  
Mateo N Silver ◽  
...  

<p>Linear regression can be applied to time series data to extract model parameters such as the effective force and friction constant matrices of the system. Even highly nonlinear systems can be analyzed by linear regression, if the total amount of data is broken up into shorter “time windows”, so that the dynamics is considered to be piece-wise linear. Traditionally, linear regression has been performed on the equation of motion itself (which approach we refer to as LRX). There has been surprisingly little published on the accuracy and reliability of LRX as applied to time series data. Here we show that linear regression can also be applied to the time correlation function of the dynamical observables (which approach we refer to as LRC), and that this approach is better justified within the context of statistical physics, namely, Zwanzig-Mori theory. We test LRC against LRX on a simple system of two damped harmonic oscillators driven by Gaussian random noise. We find that LRC allows one to improve the signal to noise ratio in a way that is not possible within LRX. Linear regression using time correlation functions (LRC) thus appears to be not only better justified theoretically, but it is more accurate and more versatile than LRX. <b></b></p>


Sign in / Sign up

Export Citation Format

Share Document