scholarly journals Lathe Parameters Optimization for UD-GFRP Composite Part Turning with PCD Tool by Taguchi Method

2020 ◽  
Vol 12 (4) ◽  
pp. 135-144
Author(s):  
Hazari NARESH ◽  
Padhy CHINMAYA PRASAD

The aerospace and automobile sectors are widely utilized the polymer composites. The composite materials, like unidirectional glass fiber reinforced polymer (UD-GFRP), is difficult to machine due to its anisotropic that is non-homogeneous character and such material requires special cutting tools. The proposed work is going to examine the tool wear, quality of the surface and forces generated in the various stages of inputs given to the machining of unidirectional glass fiber reinforced polymer (UD-GFRP) composites. The assessment of the machining incorporates tool wear investigations, surface roughness investigations and quality of material by varying input parameters. The Taguchi optimization technique with experimental design of L9 orthogonal array employed. The parameters range identified by trail runs and observations of conducted machining utilized for optimization. The Turning process parameters of cutting velocity or speed, rate of tool movement or feed rate and cutting depth on composite part or depth of cut were considered. The other factors, like tool material i.e., Poly-Crystalline Diamond (PCD) tool, its cutting regime (dry), profile of cutting tool are considered as constant parameters. The responses, like tool wear, surface finish, and cutting force, were measured against various input parameters, while machining the composite (UD-GFRP) composite part. The objective of this research is to establish relationship among various operating parameters to achieve desired results. That is major focus of the work on the economic condition for getting better values based on setting of input parameters.

2015 ◽  
Vol 76 (3) ◽  
Author(s):  
Widia Wahyuni Amir ◽  
Aidah Jumahat ◽  
Jamaluddin Mahmud

This paper presents a study on the flexural properties of glass fiber reinforced polymer composites. The epoxy-nanoclay resin was milled using a three roll mill machine to produce exfoliated structure nanocomposites. The fiber laminates specimens were manufactured by vacuum bagging system. These specimens were tested in the three point bend configuration following the ASTM D7264. The flexural modulus, flexural strength and strain to failure were then determined based on the flexural test results. The results showed that flexural modulus and flexural strength increases when a certain amount of nanoclay was included in the resin system. A maximum of 80% and 37% improvement of flexural strength and flexural modulus, respectively, were found at 5 wt% nanoclay content when compared to the neat GFRP composite. The improved properties of GFRP composites were achieved mostly due to an increase on the interfacial surface areas as well as a well-dispersion of nanoclay in the GFRP composite system. The fracture surfaces of specimens after flexural test were observed under FESEM. The results showed that the compressive failure region in the fiber was a dominant failure mechanism of the specimens due to a large compressive area on the fracture surface.


2021 ◽  
Vol 4 (4) ◽  
pp. 227-238
Author(s):  
Alper Karadis ◽  
Kabil Cetin ◽  
Taha Yasin Altıok ◽  
Ali Demir

Glass fiber reinforced polymer (GFRP) composites have been frequently used in engineering applications in recent years. GFRP composites produced by using glass fiber and epoxy resin have significant advantages such as high strength, lightness, and resistance against corrosion. However, GFRP composites exhibit a more brittle behavior than steel bars. This study aims to investigate both the experimental and numerical bending behavior of slabs with GFRP bars, steel bars, and polypropylene fiber. Within the scope of experimental studies, 5 slabs were built. Two slabs called SS-1 and SS-2 have only steel bars. Two slabs called GFRPS-1 and GFRPS-2 have only GFRP composite bars. A slab called GFRPS-F has both GFRP composite bars and polypropylene fibers. Polypropylene fibers are added to fresh concrete to improve the slab’s ductility. Three-point bending tests have been carried out on the slabs. All slabs are subjected to monotonic increasing distributed loading until collapse. As a result of tests, GFRPS slabs have carried %53 higher load than SS slabs. However, the SS slabs have exhibited a more ductile behavior compared to the GFRPS slabs. GFRPS slabs have more and larger crack width than other slabs. The addition of 5% polypropylene fiber by volume to concrete has a significant contributed to ductility and tensile behavior of slab. The average displacement value of GFRPS-F slab is 22.3% larger than GFRPS slab. GFRPS-F slab has better energy consumption capacity than other slabs. The energy consumption capacity of GFRPS-F slab is 1.34 and 1.38 times that of SS and GFRPS slabs, respectively. The number of cracks in GFRPS-F slab is fewer than GFRPS slabs. The fibers have contributed to the serviceability of the GFRPS slabs by limiting the displacement and the crack width. GFRPS-F exhibits elastoplastic behavior and almost returns to its first position when the loading is stopped. In addition, experimental results are verified with numerical results obtained by using Abaqus software. Finally, it is concluded that GFRP composite bars can be safely used in field concretes, concrete roads, prefabricated panel walls, and slabs.


2020 ◽  
Vol 4 (3) ◽  
pp. 112
Author(s):  
Teruyoshi Kanno ◽  
Hiroki Kurita ◽  
Masashi Suzuki ◽  
Hitoshi Tamura ◽  
Fumio Narita

The purpose of this paper is to investigate the through-thickness stresses of woven glass fiber reinforced polymer (GFRP) composite laminates under combined tensile and shear loading. Tensile tests were carried out with cross specimens at room temperature under various stacking angles, and the through-thickness strength properties of the woven GFRP laminates were evaluated. The failure characteristics of the woven GFRP laminates were also studied by optical microscopy observations. A three-dimensional finite element analysis (FEA) was carried out to calculate the stress distributions in the cross specimens, and the failure conditions of the specimens were examined. The numerically determined interlaminar tensile and shear stresses at failure location were consistent with Hoffman and Mohr-Coulomb failure criteria when the stacking angle was relatively small. This work is the first attempt to quantify the relation between interlaminar tensile and shear strengths of GFRP composite laminates under tensile and shear loading simultaneously using a combined numerical and experimental approach. A method based on finite element stress analysis was developed for estimating the through-thickness strength of the composite laminates using the experimentally determined fracture load and location. The results suggest that the through-thickness strength under combined tensile and shear loading can be determined effectively by this approach for relatively small stacking angles.


Sign in / Sign up

Export Citation Format

Share Document