scholarly journals Nuclear-factor kB p65 is a mediator of insulin and tumour necrosis factor-alpha stimulated vascular cell adhesion molecule-1 expression in vascular endothelial cells

2013 ◽  
Vol 1 (1) ◽  
Author(s):  
DZ Mackesy ◽  
ML Goalstone
Blood ◽  
1996 ◽  
Vol 87 (1) ◽  
pp. 211-217 ◽  
Author(s):  
J Gille ◽  
RA Swerlick ◽  
TJ Lawley ◽  
SW Caughman

Abstract As part of the inflammatory response, the localization of leukocytes depends to an important degree on cytokine-induced expression of vascular cell adhesion molecule-1 (VCAM-1) on endothelial cells (EC). We have previously shown that VCAM-1 expression is induced on human umbilical vein EC (HUVEC) by both tumor necrosis factor alpha (TNF- alpha) and interleukin-1 alpha (IL-1 alpha), whereas on human dermal microvascular EC (HDMEC) only TNF alpha results in VCAM-1 expression. To explore molecular mechanisms responsible for these contrasting patterns of VCAM-1 induction in HUVEC versus HDMEC, we performed transcriptional activation studies with VCAM-1-based reporter constructs and in vitro binding assays using two adjacent NF-kappa B binding sequences of the VCAM-1 promoter as a DNA probe. Previous studies have established that these NF-kappa B motifs are required for cytokine-induced VCAM-1 transcription, and may further mediate cell- specific VCAM-1 gene activation by cytokines. The findings reported here demonstrate a significant HDMEC-specific attenuation of VCAM-1 gene transcription in response to IL-1 alpha, but not TNF alpha. An upstream VCAM-1 gene regulatory region distinct from the NF-kappa B sites appears to function as an IL-1 alpha-mediated transcriptional repressor within HDMEC. This repressor region conveys IL-1 alpha- dependent, but not TNF alpha-dependent, inhibition of transcription driven by a heterologous cytokine response element and promoter.


Blood ◽  
1996 ◽  
Vol 87 (1) ◽  
pp. 211-217 ◽  
Author(s):  
J Gille ◽  
RA Swerlick ◽  
TJ Lawley ◽  
SW Caughman

As part of the inflammatory response, the localization of leukocytes depends to an important degree on cytokine-induced expression of vascular cell adhesion molecule-1 (VCAM-1) on endothelial cells (EC). We have previously shown that VCAM-1 expression is induced on human umbilical vein EC (HUVEC) by both tumor necrosis factor alpha (TNF- alpha) and interleukin-1 alpha (IL-1 alpha), whereas on human dermal microvascular EC (HDMEC) only TNF alpha results in VCAM-1 expression. To explore molecular mechanisms responsible for these contrasting patterns of VCAM-1 induction in HUVEC versus HDMEC, we performed transcriptional activation studies with VCAM-1-based reporter constructs and in vitro binding assays using two adjacent NF-kappa B binding sequences of the VCAM-1 promoter as a DNA probe. Previous studies have established that these NF-kappa B motifs are required for cytokine-induced VCAM-1 transcription, and may further mediate cell- specific VCAM-1 gene activation by cytokines. The findings reported here demonstrate a significant HDMEC-specific attenuation of VCAM-1 gene transcription in response to IL-1 alpha, but not TNF alpha. An upstream VCAM-1 gene regulatory region distinct from the NF-kappa B sites appears to function as an IL-1 alpha-mediated transcriptional repressor within HDMEC. This repressor region conveys IL-1 alpha- dependent, but not TNF alpha-dependent, inhibition of transcription driven by a heterologous cytokine response element and promoter.


2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Li Zhou ◽  
Hua Ning ◽  
Haibin Wei ◽  
Tiantian Xu ◽  
Xindi Zhao ◽  
...  

The activation of vascular cell adhesion molecule 1 (VCAM-1) in vascular endothelial cells has been well considered implicating in the initiation and processing of atherosclerosis. Oxidative stress is mechanistically involved in proatherosclerotic cytokine-induced VCAM-1 activation. tert-Butylhydroquinone (tBHQ), a synthetic phenolic antioxidant used for preventing lipid peroxidation of food, possesses strongly antioxidant capacity against oxidative stress-induced dysfunction in various pathological process. Here, we investigated the protective role of tBHQ on tumor necrosis factor alpha- (TNFα-) induced VCAM-1 activation in both aortic endothelium of mice and cultured human vascular endothelial cells and uncovered its potential mechanisms. Our data showed that tBHQ treatment significantly reversed TNFα-induced activation of VCAM-1 at both transcriptional and protein levels. The mechanistic study revealed that inhibiting neither nuclear factor (erythroid-derived 2)-like 2 (Nrf2) nor autophagy blocked the beneficial role of tBHQ. Alternatively, tBHQ intervention markedly alleviated TNFα-increased GATA-binding protein 6 (GATA6) mRNA and protein expressions and its translocation into nucleus. Further investigation indicated that tBHQ-inhibited signal transducer and activator of transcription 3 (STAT3) but not mitogen-activated protein kinase (MAPK) pathway contributed to its protective role against VCAM-1 activation via regulating GATA6. Collectively, our data demonstrated that tBHQ prevented TNFα-activated VCAM-1 via a novel STAT3/GATA6-involved pathway. tBHQ could be a potential candidate for the prevention of proatherosclerotic cytokine-caused inflammatory response and further dysfunctions in vascular endothelium.


Sign in / Sign up

Export Citation Format

Share Document