Behavioral Pattern Learning Models for Decision Making in Games

2009 ◽  
Vol 4 (1) ◽  
pp. 133-151 ◽  
Author(s):  
Yaron Lahav
2019 ◽  
Vol 3 (s1) ◽  
pp. 60-61
Author(s):  
Kadie Clancy ◽  
Esmaeel Dadashzadeh ◽  
Christof Kaltenmeier ◽  
JB Moses ◽  
Shandong Wu

OBJECTIVES/SPECIFIC AIMS: This retrospective study aims to create and train machine learning models using a radiomic-based feature extraction method for two classification tasks: benign vs. pathologic PI and operation of benefit vs. operation not needed. The long-term goal of our study is to build a computerized model that incorporates both radiomic features and critical non-imaging clinical factors to improve current surgical decision-making when managing PI patients. METHODS/STUDY POPULATION: Searched radiology reports from 2010-2012 via the UPMC MARS Database for reports containing the term “pneumatosis” (subsequently accounting for negations and age restrictions). Our inclusion criteria included: patient age 18 or older, clinical data available at time of CT diagnosis, and PI visualized on manual review of imaging. Cases with intra-abdominal free air were excluded. Collected CT imaging data and an additional 149 clinical data elements per patient for a total of 75 PI cases. Data collection of an additional 225 patients is ongoing. We trained models for two clinically-relevant prediction tasks. The first (referred to as prediction task 1) classifies between benign and pathologic PI. Benign PI is defined as either lack of intraoperative visualization of transmural intestinal necrosis or successful non-operative management until discharge. Pathologic PI is defined as either intraoperative visualization of transmural PI or withdrawal of care and subsequent death during hospitalization. The distribution of data samples for prediction task 1 is 47 benign cases and 38 pathologic cases. The second (referred to as prediction task 2) classifies between whether the patient benefitted from an operation or not. “Operation of benefit” is defined as patients with PI, be it transmural or simply mucosal, who benefited from an operation. “Operation not needed” is defined as patients who were safely discharged without an operation or patients who had an operation, but nothing was found. The distribution of data samples for prediction task 2 is 37 operation not needed cases and 38 operation of benefit cases. An experienced surgical resident from UPMC manually segmented 3D PI ROIs from the CT scans (5 mm Axial cut) for each case. The most concerning ~10-15 cm segment of bowel for necrosis with a 1 cm margin was selected. A total of 7 slices per patient were segmented for consistency. For both prediction task 1 and prediction task 2, we independently completed the following procedure for testing and training: 1.) Extracted radiomic features from the 3D PI ROIs that resulted in 99 total features. 2.) Used LASSO feature selection to determine the subset of the original 99 features that are most significant for performance of the prediction task. 3.) Used leave-one-out cross-validation for testing and training to account for the small dataset size in our preliminary analysis. Implemented and trained several machine learning models (AdaBoost, SVM, and Naive Bayes). 4.) Evaluated the trained models in terms of AUC and Accuracy and determined the ideal model structure based on these performance metrics. RESULTS/ANTICIPATED RESULTS: Prediction Task 1: The top-performing model for this task was an SVM model trained using 19 features. This model had an AUC of 0.79 and an accuracy of 75%. Prediction Task 2: The top-performing model for this task was an SVM model trained using 28 features. This model had an AUC of 0.74 and an accuracy of 64%. DISCUSSION/SIGNIFICANCE OF IMPACT: To the best of our knowledge, this is the first study to use radiomic-based machine learning models for the prediction of tissue ischemia, specifically intestinal ischemia in the setting of PI. In this preliminary study, which serves as a proof of concept, the performance of our models has demonstrated the potential of machine learning based only on radiomic imaging features to have discriminative power for surgical decision-making problems. While many non-imaging-related clinical factors play a role in the gestalt of clinical decision making when PI presents, we have presented radiomic-based models that may augment this decision-making process, especially for more difficult cases when clinical features indicating acute abdomen are absent. It should be noted that prediction task 2, whether or not a patient presenting with PI would benefit from an operation, has lower performance than prediction task 1 and is also a more challenging task for physicians in real clinical environments. While our results are promising and demonstrate potential, we are currently working to increase our dataset to 300 patients to further train and assess our models. References DuBose, Joseph J., et al. “Pneumatosis Intestinalis Predictive Evaluation Study (PIPES): a multicenter epidemiologic study of the Eastern Association for the Surgery of Trauma.” Journal of Trauma and Acute Care Surgery 75.1 (2013): 15-23. Knechtle, Stuart J., Andrew M. Davidoff, and Reed P. Rice. “Pneumatosis intestinalis. Surgical management and clinical outcome.” Annals of Surgery 212.2 (1990): 160.


2019 ◽  
Vol 8 (4) ◽  
pp. 12391-12394

Data flow in web is becoming high and vast, extracting useful and meaningful information from the same is especially significant. The extracted information can be utilized for enhanced decision making. The information provided by the end-users is normally in the form of comments with respect to different products and services. Sentiment analysis is effectively carried out in these kinds of compact review to give away the people’s opinion of any products. This analyzed data will be efficient to improve the business strategy. In our work the collected online movie reviews are analyzed by using machine learning sentiment classification models like Random Forest, Naive Bayes, KNN and SVM. The work has been extended with CNN and hybrid CNN-SVM deep learning models to achieve higher performance. Comparing the workings of all the above classification models for sentiment analysis based upon various performance metrics is the main objective of the paper.


Author(s):  
Aditi Vadhavkar ◽  
Pratiksha Thombare ◽  
Priyanka Bhalerao ◽  
Utkarsha Auti

Forecasting Mechanisms like Machine Learning (ML) models having been proving their significance to anticipate perioperative outcomes in the domain of decision making on the future course of actions. Many application domains have witnessed the use of ML models for identification and prioritization of adverse factors for a threat. The spread of COVID-19 has proven to be a great threat to a mankind announcing it a worldwide pandemic throughout. Many assets throughout the world has faced enormous infectivity and contagiousness of this illness. To look at the figure of undermining components of COVID-19 we’ve specifically used four Machine Learning Models Linear Regression (LR), Least shrinkage and determination administrator (LASSO), Support vector machine (SVM) and Exponential smoothing (ES). The results depict that the ES performs best among the four models employed in this study, followed by LR and LASSO which performs well in forecasting the newly confirmed cases, death rates yet recovery rates, but SVM performs poorly all told the prediction scenarios given the available dataset.


Author(s):  
Shira Mitchell ◽  
Eric Potash ◽  
Solon Barocas ◽  
Alexander D’Amour ◽  
Kristian Lum

A recent wave of research has attempted to define fairness quantitatively. In particular, this work has explored what fairness might mean in the context of decisions based on the predictions of statistical and machine learning models. The rapid growth of this new field has led to wildly inconsistent motivations, terminology, and notation, presenting a serious challenge for cataloging and comparing definitions. This article attempts to bring much-needed order. First, we explicate the various choices and assumptions made—often implicitly—to justify the use of prediction-based decision-making. Next, we show how such choices and assumptions can raise fairness concerns and we present a notationally consistent catalog of fairness definitions from the literature. In doing so, we offer a concise reference for thinking through the choices, assumptions, and fairness considerations of prediction-based decision-making. Expected final online publication date for the Annual Review of Statistics, Volume 8 is March 8, 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2019 ◽  
Vol 15 (1) ◽  
pp. 33-45 ◽  
Author(s):  
Aleksandra Swiderska ◽  
Eva G. Krumhuber ◽  
Arvid Kappas

This article describes how studies in the area of decision-making suggest clear differences in behavioral responses to humans versus computers. The current objective was to investigate decision-making in an economic game played only with computer partners. In Experiment 1, participants were engaged in the ultimatum game with computer agents and regular computers while their physiological responses were recorded. In Experiment 2, an identical setup of the game was used, but the ethnicity of the computer agents was manipulated. As expected, almost all equitable monetary splits offered by the computer were accepted. The acceptance rates gradually decreased when the splits became less fair. Although the obtained behavioral pattern implied a reaction to violation of the rule of fairness by the computer in the game, no evidence was found for participants' corresponding emotional involvement. The findings contribute to the body of research on human-computer interaction and suggest that social effects of computers can be attenuated.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Saurabh Kumar

PurposeDecision-making in human beings is affected by emotions and sentiments. The affective computing takes this into account, intending to tailor decision support to the emotional states of people. However, the representation and classification of emotions is a very challenging task. The study used customized methods of deep learning models to aid in the accurate classification of emotions and sentiments.Design/methodology/approachThe present study presents affective computing model using both text and image data. The text-based affective computing was conducted on four standard datasets using three deep learning customized models, namely LSTM, GRU and CNN. The study used four variants of deep learning including the LSTM model, LSTM model with GloVe embeddings, Bi-directional LSTM model and LSTM model with attention layer.FindingsThe result suggests that the proposed method outperforms the earlier methods. For image-based affective computing, the data was extracted from Instagram, and Facial emotion recognition was carried out using three deep learning models, namely CNN, transfer learning with VGG-19 model and transfer learning with ResNet-18 model. The results suggest that the proposed methods for both text and image can be used for affective computing and aid in decision-making.Originality/valueThe study used deep learning for affective computing. Earlier studies have used machine learning algorithms for affective computing. However, the present study uses deep learning for affective computing.


Sign in / Sign up

Export Citation Format

Share Document