Effect of a 0.3-eV Resonance Cross Section for Plutonium on the Coolant Void Reactivity in a Heavy Water Lattice

1997 ◽  
Vol 127 (1) ◽  
pp. 89-103
Author(s):  
Yasuki Kowata ◽  
Nobuo Fukumura

The 90° cross-section of the reaction 3 1 H( d , n ) 4 2 He has been investigated over the energy range 100 to 200 keV (energy of bombarding triton) using the 200 keV accelerating set of the establishment. Two methods have been used. As a preliminary experiment the yield of alpha-particles from a thick heavy-ice target was measured per unit charge of incident beam, as a function of deuteron energy, and the variation of cross-section deduced from the gradient of this excitation curve and the range energy relation for tritons in heavy water. Secondly, a comparison was made between the yield of alpha-particles from the D-T reaction and the yield of protons from the D-D reaction when a beam containing both deuterons and tritons was passed through a heavy-water vapour target. (The energy loss in this target was calculated as only a few hundred electron volts.) To do this a simultaneous observation was made of the protons and alpha-particles using the same counter. The values obtained for the cross-section have been compared with the resonance formulae given by Bretscher & French (1949) and by Tascbek, Everhart, Gittings, Hemmendinger & Jarvis (1948) and have been found to be in disagreement with formulae of this type. From considerations of the absolute magnitude of the cross-section it has been deduced that no conventional theory postulating reaction at a distance equal to the sum of the nuclear radii (cf. Konopinski & Teller 1948) will be able to explain this reaction. The evidence for a low-energy resonance (Allan & Poole 1949) is thought to be inconclusive.


Author(s):  
L. Amyot ◽  
G. Birkhoff ◽  
G. Casini ◽  
R. Cuniberti ◽  
W. De Haan ◽  
...  
Keyword(s):  

1958 ◽  
Vol 36 (4) ◽  
pp. 415-418 ◽  
Author(s):  
H. J. King ◽  
L. Katz

The neutron yield resulting from photoneutron reactions in Lu175 has been measured as a function of peak bremsstrahlung energy up to 23 Mev. The threshold energy for this reaction was found to be 7.77 ± 0.05 Mev. The giant resonance cross section has a peak value of 225 millibarns at 16 Mev., a half-width of 8.4 Mev., and an integrated cross section to 23 Mev. of 1.9 Mev-barns.


2020 ◽  
Vol 239 ◽  
pp. 18005
Author(s):  
Bohumil Jansky ◽  
Jiri Rejchrt ◽  
Evzen Novak ◽  
Anatoly Blokhin

The leakage neutron spectra measurements have been done on benchmark spherical assemblies with Cf-252 source in center of 1) heavy water sphere with diameter of 30 cm (with Cd cover) and of 2) iron spheres with diameter of 100 cm and 50 cm. It has been stated for years that transport calculations by iron overestimate measured spectra in energy region around 300 keV by about 20-40 % (calculation to measurement ratio C/E = 1.2-1.4). The influence of an artificial changes in cross-section XS-Fe-56 (n,elastic)designed by IAEA, Nuclear Data Section, has been studied on the iron spheres. Influence of those XS-corrections to calculated neutron spectrum is presented.


1947 ◽  
Vol 25a (1) ◽  
pp. 26-41 ◽  
Author(s):  
H. G. Hereward ◽  
H. R. Paneth ◽  
G. C. Laurence ◽  
B. W. Sargent ◽  
A. M. Munn

The density distribution of thermal neutrons was measured with a small boron trifluoride chamber in a cylindrical tank containing 113 litres of heavy water in which lithium carbonate was dissolved. The diffusion length was found to be 22.7 cm. in this solution containing 7.70 × 10−4 atoms of lithium per molecule of heavy water (99.4 atom % D). After corrections were applied for the capture of neutrons in the heavy water and light hydrogen, the capture cross-section of lithium was found to be 59 × 10−24 cm.2 per atom for neutrons of standard velocity 2200 m. per sec. from the measured diffusion length and known transport mean free path.


Sign in / Sign up

Export Citation Format

Share Document