scholarly journals Mathematical Modelling of Roll Motion for a Floating Body in Regular Waves Using Frequency Based Analysis with Speed

2013 ◽  
Vol 1 (2) ◽  
pp. 34-39
Author(s):  
Masoud Baghfalaki ◽  
Samir K. Das
2016 ◽  
Vol 13 (04) ◽  
pp. 1641013 ◽  
Author(s):  
Youlin Zhang ◽  
Zhenyuan Tang ◽  
Decheng Wan

In this paper, interaction between regular waves and free roll motion of a two-dimensional (2D) floating body is investigated by our in-house meshless particle solver MLParticle-SJTU based on modified moving particle semi-implicit (MPS) method. Numerical wave tank (NWT) is developed to calculate the interaction between waves and floating body, including wave-maker module and free roll motion module. The comparison between the numerical wave elevation and analytical solution shows that the MLParticle-SJTU solver can provide acceptable accuracy of wave making. Roll motion and force acting on the floating body in waves are in good agreement with experimental results. Profiles of the wave surface surrounding floating body are presented.


2014 ◽  
Vol 494-495 ◽  
pp. 321-327
Author(s):  
Ya Xin Huang ◽  
Bing Wang ◽  
Jun Yi Liu

In order to analyze the force of the anchor chains and the cable in the crane-system with a floating base, firstly the system is simplified to two-rigid-body model and the anchor chains in the system are in symmetric layout; then the motion response of the system as well as the force of the anchor chains and the cable are solved by use of discrete time transfer matrix method, lastly the time history curves of motion of the system and the force of the anchor chains and the cable are obtained. The results of numerical simulation show that the roll motion has greater influences on the system comparing with sway and heave, the amplitudes of sway and heave are small. Furthermore, the force of the anchor chains are mainly caused by the roll motion while the force caused by sway and heave are relatively small.


2004 ◽  
Vol 2004 (41) ◽  
pp. 2181-2197 ◽  
Author(s):  
S. N. Das ◽  
S. K. Das

This paper investigates the motion response of a floating body in time domain under the influence of small amplitude regular waves. The governing equations of motion describing the balance of wave-exciting force with the inertial, damping, and restoring forces are transformed into frequency domain by applying Laplace transform technique. Assuming the floating body is initially at rest and the waves act perpendicular to the vessel of lateral symmetry, hydrodynamic coefficients were obtained in terms of integrated sectional added-mass, damping, and restoring coefficients, derived from Frank's close-fit curve. A numerical experiment on a vessel of19190ton displaced mass was carried out for three different wave frequencies, namely,0.56rad/s,0.74rad/s, and1.24rad/s. The damping parameters (ςi) reveal the system stability criteria, derived from the quartic analysis, corresponding to the undamped frequencies (βi). It is observed that the sway and yaw motions become maximum for frequency0.56rad/s, whereas roll motion is maximum for frequency0.74rad/s. All three motions show harmonic behavior and attain dynamic equilibrium for timet>100seconds. The mathematical approach presented here will be useful to determine seaworthiness characteristics of any vessel when wave amplitudes are small and also to validate complex numerical models.


Author(s):  
Higor Felipe de Medeiros ◽  
Guilherme Espan˜a Rueda Silva ◽  
Liang-Yee Cheng ◽  
Marcio Michiharu Tsukamoto ◽  
Kazuo Nishimoto

Usually, the hydrodynamic loads due to sloshing are considered in the design of liquid cargo ship or floating units concerning the structural. Owing to the increasing size of these structures, resonant sloshing motions may occur and result in the amplification or attenuation of motion of the vessel. In order to assess the effect of sloshing, traditionally the motion of the vessel is calculated at first without considering the dynamic of the liquid inside the tank. After that, this motion of the vessel is inputted as excitation motion acting on the tank and, finally, the sloshing effect is evaluated. In the other words, the coupling effects of sloshing and sea wave in the vessel’s motion are ignored. A bibliographical survey shows that there are few studies that consider the effect of sloshing on the ship motion, acting as a passive device of absorption of the movements. The main goal of this research is to investigate experimentally the roll motion amplification and reduction due to sloshing. The coupling effects of sloshing and sea wave in the vessel’s motion are taking into account by recording the motions, in regular waves, of a free floating model with a partially filled liquid tank. For this purpose, a two-dimensional model is designed to carry out measurements with fixed cargo and partially filled liquid cargo. The experimental results are evaluated by comparing the measured motion of the free-floating model with fixed cargo against the results obtained by traditional approach. Then, the effects of sloshing on floating units are shown by comparison of the measurements from free-floating model with fixed cargo and liquid cargo. The results shown herein provide data for the validation of new numerical approaches for the study of the coupled motions of the floating units and sloshing.


Author(s):  
Jae-Hoon Lee ◽  
Yonghwan Kim ◽  
Min-Guk Seo

In the present study, the added resistance of a containership in parametric roll motion is investigated. The numerical simulation is carried out using a three dimensional Rankine panel method along with the weakly nonlinear formulation. The added resistance is evaluated by a near-field method, namely, the direct integration of the 2nd-order pressure on a body surface. To calculate the component resulting from the large-amplitude roll motion, the higher-order restoring and Froude-Krylov forces on wetted hull surfaces are taken into account. With or without parametric roll in regular waves, the components of added resistance classified with respect to integral terms are compared to figure out the important of each term. Through the investigation, the correlation between the added resistance and parametric roll is derived from coupling and decoupling the components of roll motion and vertical motions.


Sign in / Sign up

Export Citation Format

Share Document