Ruboxistaurin, a Protein Kinase C β Inhibitor, as an Emerging Treatment for Diabetes Microvascular Complications

2005 ◽  
Vol 39 (10) ◽  
pp. 1693-1699 ◽  
Author(s):  
Scott V Joy ◽  
Ann C Scates ◽  
Srilaxmi Bearelly ◽  
Moahad Dar ◽  
Christina A Taulien ◽  
...  

OBJECTIVE: To review current clinical data regarding the pharmacologic actions of ruboxistaurin (LY333531) mesylate, an inhibitor of protein kinase C (PKC) β, and its role to potentially reduce the development and/or the progression of diabetic microvascular complications. DATA SOURCES: Primary literature was obtained via a MEDLINE search (1966–August 2004) and through review of pertinent abstracts and presentations at major medical meetings. STUDY SELECTION AND DATA EXTRACTION: Literature relevant to PKC physiology, the pharmacokinetics of ruboxistaurin, and data evaluating the use of ruboxistaurin in treating diabetic microvascular complications in human and relevant animal models was reviewed. DATA SYNTHESIS: PKC is part of a group of intracellular signaling molecules activated in response to various specific hormonal, neuronal, and growth factor stimuli. Hyperglycemia leads to PKC β 1 and 2 isoform activation, which experimentally has been shown to contribute to the development and progression of diabetic microvascular complications (retinopathy, nephropathy, neuropathy) through various biochemical mechanisms. Animal and/or human studies using ruboxistaurin mesylate, a novel, highly selective inhibitor of PKC β, have shown delay in the progression and, in some cases, reversal of diabetic retinopathy, nephropathy, and neuropathy. CONCLUSIONS: Ruboxistaurin mesylate, by inhibiting excessive activation of certain PKC isoforms, has the potential to reduce the burden of microvascular complications for patients with diabetes.

Author(s):  
Simran ◽  
Amarjot Kaur Grewal ◽  
Sandeep Arora ◽  
Thakur Gurjeet Singh

Diabetes is the most common and systemic disorder associated with hyperglycemia which is the significant factor in the development of micro- and macrovascular changes. Many mechanistic approaches i.e. activation of Protein kinase C, glycation end products production, hexosamine pathway and polyol pathway induce cellular damage and lead to the development of diabetic complications like nephropathy, neuropathy, retinopathy, and myopathy. One of the adverse effects of long-lasting hyperglycemia is activation of PKC (intracellular signaling enzyme) and has become a field of great research interest. Hence, in this review special emphasis is placed on microvascular complications which are due to activation of PKC. Clinical trials have also been conducted using selective PKC inhibitors and have shown positive results against hyperglycemia.


2019 ◽  
Author(s):  
Ann Rita Halvorsen ◽  
Mads Haugland Haugen ◽  
Åsa Kristina Öjlert ◽  
Marius Lund-Iversen ◽  
Lars Jørgensen ◽  
...  

Abstract Background Protein expression is deregulated in cancer, and the proteomic changes observed in lung cancer may be a consequence of mutations in essential genes. The purpose of this study was to identify protein expression associated with prognosis in lung cancers stratified by smoking status, molecular subtypes, and EGFR-, TP53- and KRAS-mutations. Methods We performed profiling of 295 cancer-relevant phosphorylated and non-phosphorylated proteins, using reverse phase protein arrays. Biopsies from 80 patients with operable lung adenocarcinomas were analyzed for protein expression and association with progression free survival (PFS) were studied. Results Spearman rank correlation analysis identified 56 proteins with significant association to PFS (p<0.05). High expression of protein kinase C (PKC)-α and the phosporylated state of PKC-α, PKC-β and PKC-δ, showed the strongest positive correlation to PFS, especially in the wild type samples. This was confirmed in gene expression data from 186 samples. Based on protein expression, unsupervised hierarchical clustering separated the samples into four subclusters enriched with the molecular subtypes TRU, PI or PP (p=0.0001). Subcluster 2 contained a smaller cluster (2a) enriched with samples of the subtype PP, low expression of the PKC isozymes, and associated with poor PFS (p=0.003) compared to the other samples. Subcluster 2a revealed increased expression of neuroendocrine markers, supporting the aggressive behavior. Low expression of the PKC isozymes in the subtype PP and a reduced relapse free survival was confirmed with the TCGA LUAD samples. Conclusion This study identified different proteins associated with PFS depending on molecular subtype, smoking- and mutational-status, with PKC-α, PKC-β and PKC-δ showing the strongest correlation. Cluster analysis detected a subgroup of samples enriched for samples of the PP subtype and poor PFS, which may benefit from a more aggressive treatment regimen.


Development ◽  
2000 ◽  
Vol 127 (1) ◽  
pp. 33-44 ◽  
Author(s):  
J. Wang ◽  
L. Mayernik ◽  
J.F. Schultz ◽  
D.R. Armant

Heparin-binding EGF-like growth factor (HB-EGF) is expressed in the mouse endometrial epithelium during implantation exclusively at sites apposed to embryos and accelerates the development of cultured blastocysts, suggesting that it may regulate peri-implantation development in utero. We have examined the influence of HB-EGF on mouse trophoblast differentiation in vitro and the associated intracellular signaling pathways. HB-EGF both induced intracellular Ca2+ signaling and accelerated trophoblast development to an adhesion-competent stage, but only late on gestation day 4 after ErbB4, a receptor for HB-EGF, translocated from the cytoplasm to the apical surface of trophoblast cells. The acceleration of blastocyst differentiation by HB-EGF was attenuated after inhibition of protein tyrosine kinase activity or removal of surface heparan sulfate, as expected. Chelation of intracellular Ca2+ blocked the ability of HB-EGF to accelerate development, as did inhibitors of protein kinase C or calmodulin. The absence of any effect by a phospholipase C inhibitor and the requirement for extracellular Ca2+ suggested that the accrued free cytoplasmic Ca2+ did not originate from inositol phosphate-sensitive intracellular stores, but through Ca2+ influx. Indeed, N-type Ca2+ channel blockers specifically inhibited the ability of HB-EGF to both induce Ca2+ signaling and accelerate trophoblast development. We conclude that HB-EGF accelerates the differentiation of trophoblast cells to an adhesion-competent stage by inducing Ca2+ influx, which activates calmodulin and protein kinase C. An upstream role for ErbB4 in this pathway is implicated by the timing of its translocation to the trophoblast surface.


1998 ◽  
Vol 79 (2) ◽  
pp. 1127-1131 ◽  
Author(s):  
Rainer W. Friedrich ◽  
G. F. Molnar ◽  
Michael Schiebe ◽  
A. Joffre Mercier

Friedrich, Rainer W., G. F. Molnar, Michael Schiebe, and A. Joffre Mercier. Protein kinase C is required for long-lasting synaptic enhancement by the neuropeptide DRNFLRFamide in crayfish. J. Neurophysiol. 79: 1127–1131, 1998. The FMRFamide-related neuropeptide AspArgAsnPheLeuArgPhe-NH2 (DRNFLRFamide, DF2) induces a long-lasting enhancement of synaptic transmission at neuromuscular junctions on the crayfish deep abdominal extensor muscles. Here we investigated the function of protein kinase C (PKC) in this effect because PKC has been implied in the control of long-term synaptic modulation in other systems. The general kinase antagonist staurosporine reduced both the initial increase in excitatory postsynaptic potential (EPSP) amplitude and the duration of synaptic enhancement. Unlike staurosporine, the selective PKC inhibitors, chelerythrine and bisindolylmaleimide, augmented the initial EPSP increase. However, like staurosporine, they also reduced the duration of synaptic enhancement. The PKC activator, phorbol-12-myristate 13-acetate, induced a long-lasting synaptic enhancement that was blocked by chelerythrine. These results show that synaptic enhancement by DF2 is mediated by different intracellular signaling systems that act in temporal sequence. The initial increase in EPSP amplitudes is negatively regulated by PKC and involves another, staurosporine-sensitive, kinase; whereas, the maintenance of synaptic enhancement requires PKC.


1993 ◽  
Vol 264 (5) ◽  
pp. F845-F853
Author(s):  
M. M. Friedlaender ◽  
D. Jain ◽  
Z. Ahmed ◽  
D. Hart ◽  
R. L. Barnett ◽  
...  

Previous work from this laboratory has identified an endothelin (ET) type A (ETA) receptor on cultured rat renal medullary interstitial cells (RMIC), coupled to phosphatidylinositol-specific phospholipase C (PI-PLC), dihydropyridine-insensitive receptor-operated Ca2+ channels, and phospholipase A2. The current studies explored a role for ET stimulation of phosphatidylcholine-specific phospholipase D (PC-PLD) in intracellular signaling of this cell type. ET stimulated PLD activation, as measured by phosphatidic acid (PA) or phosphatidylethanol (PEt) accumulation, in a time- and concentration-dependent manner. Inhibition of diacylglycerol (DAG) kinase by ethylene glycol dioctanoate or 6-(2)4-[(4-fluorophenyl)-phenylmethylene]-1-piperadinyl]ethy l-7-methyl-5H - thiaxolo-[3,2-alpyrimidin]-5-one (R 59022) failed to blunt PA accumulation, indicating that PLD, and not DAG, was the source of PA. Inhibition of PA phosphohydrolase (PAP) by propranolol increased late accumulation of PA, suggesting that the prevailing metabolic flow was in the direction of PA to DAG. Phorbol 12-myristate 13-acetate (PMA) augmented ET-evoked PEt accumulation, whereas downregulation of protein kinase C (PKC) obviated agonist-induced PEt production. PMA augmentation of PLD activity proceeded independent of cytosolic free Ca2+ concentration. Ca2+ derived from either intracellular or extracellular sources enhanced ET-related PEt accumulation but was without effect in PKC-downregulated cells. Collectively, these observations indicate that ET stimulates PLD production in RMIC. PKC is the major regulator of this process, with Ca2+ playing a secondary, modulatory role. In addition, these data suggest that PC-PLD is coupled to the ETA receptor.


2011 ◽  
Vol 301 (5) ◽  
pp. C1251-C1261 ◽  
Author(s):  
Christian Winter ◽  
Nicole B. Kampik ◽  
Luca Vedovelli ◽  
Florina Rothenberger ◽  
Teodor G. Păunescu ◽  
...  

Urinary acidification in the collecting duct is mediated by the activity of H+-ATPases and is stimulated by various factors including angiotensin II and aldosterone. Classically, aldosterone effects are mediated via the mineralocorticoid receptor. Recently, we demonstrated a nongenomic stimulatory effect of aldosterone on H+-ATPase activity in acid-secretory intercalated cells of isolated mouse outer medullary collecting ducts (OMCD). Here we investigated the intracellular signaling cascade mediating this stimulatory effect. Aldosterone stimulated H+-ATPase activity in isolated mouse and human OMCDs. This effect was blocked by suramin, a general G protein inhibitor, and GP-2A, a specific Gαq inhibitor, whereas pertussis toxin was without effect. Inhibition of phospholipase C with U-73122, chelation of intracellular Ca2+ with BAPTA, and blockade of protein kinase C prevented the stimulation of H+-ATPases. Stimulation of PKC by DOG mimicked the effect of aldosterone on H+-ATPase activity. Similarly, aldosterone and DOG induced a rapid translocation of H+-ATPases to the luminal side of OMCD cells in vivo. In addition, PD098059, an inhibitor of ERK1/2 activation, blocked the aldosterone and DOG effects. Inhibition of PKA with H89 or KT2750 prevented and incubation with 8-bromoadenosine-cAMP mildly increased H+-ATPase activity. Thus, the nongenomic modulation of H+-ATPase activity in OMCD-intercalated cells by aldosterone involves several intracellular pathways and may be mediated by a Gαq protein-coupled receptor and PKC. PKA and cAMP appear to have a modulatory effect. The rapid nongenomic action of aldosterone may participate in the regulation of H+-ATPase activity and contribute to final urinary acidification.


Sign in / Sign up

Export Citation Format

Share Document