Chemistry and biology of Okinawan marine natural products

2009 ◽  
Vol 81 (6) ◽  
pp. 1009-1018 ◽  
Author(s):  
Jun'ichi Kobayashi

Marine macro- and micro-organisms collected in Okinawa are good sources of compounds with intriguing structures and interesting biological activities. Synthetic hybrid molecules of caffeine and eudistomin D from tunicates Eudistoma sp. were found to show better potency as adenosine receptor ligands than caffeine, and one of them exhibits potent activity for adenosine receptors tested, especially for A3 subtype. Potent cytotoxic polyene macrolides from a tunicate Cystodytes sp. were found to be potent osteoclast inhibitors and to inhibit vacuolar type H+-ATPase (V-ATPase) of both mammalian and yeast cells. Amphidinolactones A and B are new macrolides from a dinoflagellate Amphidinium sp., and a potent cytotoxic macrolide from another strain was found to target actin cytoskeleton. Theonezolide A, a long-chain polyketide from a sponge Theonella sp., induces a drastic shape change in platelets by reorganization of microtubules. The stereochemistry of many chiral centers in theonezolide A was elucidated by spectral data and chemical means. Metachromins L-Q are new sesquiterpenoid quinones with an amino acid residue, while nakijiquinones E and F were the first dimeric sesquiterpenoid quinones possessing a 3-aminobenzoate moiety. Halichonadin E is the first hetero-dimeric sesquiterpenoid with eudesmane and aromadendrane skeletons linked through a urea fragment isolated from a sponge Halichondria sp. Pyrinadine A and nakinadine A are novel bis-pyridine alkaloids from sponges, while nagelamides are new bromopyrrole alkaloids from a sponge Agelas sp. Here, the structures and bioactivities of these interesting marine natural products will be described.

2020 ◽  
Vol 24 (4) ◽  
pp. 354-401 ◽  
Author(s):  
Keisham S. Singh

Marine natural products (MNPs) containing pyrone rings have been isolated from numerous marine organisms, and also produced by marine fungi and bacteria, particularly, actinomycetes. They constitute a versatile structure unit of bioactive natural products that exhibit various biological activities such as antibiotic, antifungal, cytotoxic, neurotoxic, phytotoxic and anti-tyrosinase. The two structure isomers of pyrone ring are γ- pyrone and α-pyrone. In terms of chemical motif, γ-pyrone is the vinologous form of α- pyrone which possesses a lactone ring. Actinomycete bacteria are responsible for the production of several α-pyrone compounds such as elijopyrones A-D, salinipyrones and violapyrones etc. to name a few. A class of pyrone metabolites, polypropionates which have fascinating carbon skeleton, is primarily produced by marine molluscs. Interestingly, some of the pyrone polytketides which are found in cone snails are actually synthesized by actinomycete bacteria. Several pyrone derivatives have been obtained from marine fungi such as Aspergillums flavus, Altenaria sp., etc. The γ-pyrone derivative namely, kojic acid obtained from Aspergillus fungus has high commercial demand and finds various applications. Kojic acid and its derivative displayed inhibition of tyrosinase activity and, it is also extensively used as a ligand in coordination chemistry. Owing to their commercial and biological significance, the synthesis of pyrone containing compounds has been given attention over the past years. Few reviews on the total synthesis of pyrone containing natural products namely, polypropionate metabolites have been reported. However, these reviews skipped other marine pyrone metabolites and also omitted discussion on isolation and detailed biological activities. This review presents a brief account of the isolation of marine metabolites containing a pyrone ring and their reported bio-activities. Further, the review covers the synthesis of marine pyrone metabolites such as cyercene-A, placidenes, onchitriol-I, onchitriol-II, crispatene, photodeoxytrichidione, (-) membrenone-C, lihualide-B, macrocyclic enol ethers and auripyrones-A & B.


Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 1898
Author(s):  
Fauzia Izzati ◽  
Mega Ferdina Warsito ◽  
Asep Bayu ◽  
Anggia Prasetyoputri ◽  
Akhirta Atikana ◽  
...  

Marine invertebrates have been reported to be an excellent resource of many novel bioactive compounds. Studies reported that Indonesia has remarkable yet underexplored marine natural products, with a high chemical diversity and a broad spectrum of biological activities. This review discusses recent updates on the exploration of marine natural products from Indonesian marine invertebrates (i.e., sponges, tunicates, and soft corals) throughout 2007–2020. This paper summarizes the structural diversity and biological function of the bioactive compounds isolated from Indonesian marine invertebrates as antimicrobial, antifungal, anticancer, and antiviral, while also presenting the opportunity for further investigation of novel compounds derived from Indonesian marine invertebrates.


Marine Drugs ◽  
2018 ◽  
Vol 16 (10) ◽  
pp. 384 ◽  
Author(s):  
Giuseppe Floresta ◽  
Emanuele Amata ◽  
Carla Barbaraci ◽  
Davide Gentile ◽  
Rita Turnaturi ◽  
...  

Sigma receptors are a fascinating receptor protein class whose ligands are actually under clinical evaluation for the modulation of opioid analgesia and their use as positron emission tomography radiotracers. In particular, peculiar biological and therapeutic functions are associated with the sigma-2 (σ2) receptor. The σ2 receptor ligands determine tumor cell death through apoptotic and non-apoptotic pathways, and the overexpression of σ2 receptors in several tumor cell lines has been well documented, with significantly higher levels in proliferating tumor cells compared to quiescent ones. This acknowledged feature has found practical application in the development of cancer cell tracers and for ligand-targeting therapy. In this context, the development of new ligands that target the σ2 receptors is beneficial for those diseases in which this protein is involved. In this paper, we conducted a search of new potential σ2 receptor ligands among a database of 1517 “small” marine natural products constructed by the union of the Seaweed Metabolite and the Chemical Entities of Biological Interest (ChEBI) Databases. The structures were passed through two filters that were constituted by our developed two-dimensional (2D) and three-dimensional Quantitative Structure-Activity Relationship (3D-QSAR) statistical models, and successively docked upon a σ2 receptor homology model that we built according to the FASTA sequence of the σ2/TMEM97 (SGMR2_HUMAN) receptor.


RSC Advances ◽  
2020 ◽  
Vol 10 (57) ◽  
pp. 34959-34976
Author(s):  
Enas Reda Abdelaleem ◽  
Mamdouh Nabil Samy ◽  
Samar Yehia Desoukey ◽  
Miaomiao Liu ◽  
Ronald J. Quinn ◽  
...  

Marine organisms have been considered an interesting target for the discovery of different classes of secondary natural products with wide-ranging biological activities.


2020 ◽  
Vol 27 ◽  
Author(s):  
Tian-Tian Sun ◽  
Hua-Jie Zhu ◽  
Fei Cao

: Respiratory viruses, including influenza virus, respiratory syncytial virus, coronavirus, et al., have seriously threatened the human health. For example, the outbreak of severe acute respiratory syndrome coronavirus, SARS, affected a large number of countries around the world. Marine organisms, which could produce secondary metabolites with novel structures and abundant biological activities, are an important source for seeking effective drugs against respiratory viruses. This report reviews marine natural products with activities against respiratory viruses, the emphasis of which was put on structures and antiviral activities of these natural products. This review has described 167 marine-derived secondary metabolites with activities against respiratory viruses published during 1981 to 2019. Altogether 102 references are cited in this review article.


2020 ◽  
Vol 23 (22) ◽  
pp. 2436-2468
Author(s):  
Supriya Tilvi ◽  
Safia Khan ◽  
Mahesh S. Majik

: γ-Hydroxybutenolides (γ-HB) is an important structural core found in many bioactive marine natural products (MNPS). The γ-HB core containing NPS served as an inspiration to medicinal chemists to undertake designing of the new synthetic strategies to construct γ-HB core. Subsequently, it further results in the development of novel physiological and therapeutic agents. The most notable example includes manoalides, cacospongionolides, petrosaspongioide M and dysidiolide from marine sponges possessing anti-inflammatory properties. γ-HB containing MNPS were known to possess various pharmacological properties such as antimicrobial (acantholide B), cytotoxic (acantholide A-E, spongianolide A), inhibitors of secretory phospholipase A2 (cladocorans A and B), BACE inhibitors (ianthellidone G), etc. Moreover, the γ-HB moiety was explored as antifouling agents as well. Owing to their numerous biological activities and attractive molecular structures, there are lots of advances in the synthetic methodology of these compounds. This review gives the account on isolation and biological studies of MNPS with γ-HB skeleton as a core unit. Furthermore, the synthesis of selective γ-HB containing bioactive MNPS like manoalide, secomanoalide, cacospongionolides, luffarielloide and dysidiolide were highlighted in the article.


Science ◽  
2020 ◽  
Vol 368 (6494) ◽  
pp. 1007-1011 ◽  
Author(s):  
Barry M. Trost ◽  
Youliang Wang ◽  
Andreas K. Buckl ◽  
Zhongxing Huang ◽  
Minh H. Nguyen ◽  
...  

Bryostatins are a family of 21 complex marine natural products with a wide range of potent biological activities. Among all the 21 bryostatins, bryostatin 3 is structurally the most complex. Whereas nine total syntheses of bryostatins have been achieved to date, bryostatin 3 has only been targeted once and required the highest number of steps to synthesize (43 steps in the longest linear sequence and 88 total steps). Here, we report a concise total synthesis of bryostatin 3 using 22 steps in the longest linear sequence and 31 total steps through a highly convergent synthetic plan by the use of highly atom-economical and chemoselective transformations in which alkynes played a major role in reducing step count.


Marine Drugs ◽  
2019 ◽  
Vol 17 (2) ◽  
pp. 115 ◽  
Author(s):  
Amr El-Demerdash ◽  
Atanas G. Atanasov ◽  
Olaf K. Horbanczuk ◽  
Mohamed A. Tammam ◽  
Mamdouh Abdel-Mogib ◽  
...  

Marine natural products (MNPs) continue to be in the spotlight in the global drug discovery endeavor. Currently, more than 30,000 structurally diverse secondary metabolites from marine sources have been isolated, making MNPs a profound, renewable source to investigate novel drug compounds. Marine sponges of the genus Suberea (family: Aplysinellidae) are recognized as producers of bromotyrosine derivatives, which are considered distinct chemotaxonomic markers for the marine sponges belonging to the order Verongida. This class of compounds exhibits structural diversity, ranging from simple monomeric molecules to more complex molecular scaffolds, displaying a myriad of biological and pharmacological potentialities. In this review, a comprehensive literature survey covering the period of 1998–2018, focusing on the chemistry and biological/pharmacological activities of marine natural products from marine sponges of the genus Suberea, with special attention to the biogenesis of the different skeletons of halogenated compounds, is presented.


2020 ◽  
Vol 15 (9) ◽  
pp. 1934578X2095143
Author(s):  
Qianqian He ◽  
Shuang Miao ◽  
Na Ni ◽  
Yuqing Man ◽  
Kaikai Gong

Marine sponges, which belong to the phylum Porifera (Metazoa), are considered the single best source of marine natural products. Among them, members of the genus Aaptos are attractive targets for marine natural product research owing to their abundant biogenetic ability to produce aaptamine derivatives. Apart from aaptamine alkaloids, there are also reports of other compounds from Aaptos sponges. This work reviews the secondary metabolites isolated from Aaptos species from 1982 to 2020, with 46 citations referring to 62 compounds (47 for aaptamines and 15 for others). The emphasis is placed on the structure of the organic molecules, relevant biological activities, chemical ecology aspects, and biosynthesis studies, which are described in the classifications of aaptamines and other compounds in the order of the published year.


Author(s):  
Rajeev Goel ◽  
Binny Mahendru ◽  
Tushar Saini

The biomedical potential of the sea has gone largely unexplored so far, despite the fact that it covers three quarters of the planet surface and the fact that life on Earth originated from the sea. However, with the arrival of the professional deep sea divers, the marine researchers have gained access to all sorts of marine creatures like sponges, corals, sea urchins, sea squirts, hydroids, sea anemones, fishes and mollusks as well as to varied types of sea plants including algae and the other micro-organisms embedded in the sea bed. The biomedical scientists are exploiting these all to extract marine natural products (MNPs) having pharmacological properties that may one day cure long list of illnesses varying from bacterial infections to cancer, Alzheimer's and AIDS and was the focus of this review article.


Sign in / Sign up

Export Citation Format

Share Document