Assembling nanoparticles and biomacromolecules using electrostatic interactions

2002 ◽  
Vol 74 (9) ◽  
pp. 1621-1630 ◽  
Author(s):  
Murali Sastry

Nanotechnology is witnessing impressive advances on many different fronts. One of the key areas with important commercial implications concerns the assembly of nanoparticles to form thin films and superstructures by what is commonly known as the "bottom-up" approach. This paper covers some of the more recent developments in this fascinating field with particular emphasis on the work from the author's laboratory on assembly of nanoparticles using electrostatic interactions. The use of electrostatic interactions enables extension of the assembly protocols to the immobilization of biomacromolecules such as proteins/enzymes and DNA with exciting application potential.

2017 ◽  
Vol 8 ◽  
pp. 1786-1800 ◽  
Author(s):  
Lars Smykalla ◽  
Carola Mende ◽  
Michael Fronk ◽  
Pablo F Siles ◽  
Michael Hietschold ◽  
...  

The bottom-up approach to replace existing devices by molecular-based systems is a subject that attracts permanently increasing interest. Molecular-based devices offer not only to miniaturize the device further, but also to benefit from advanced functionalities of deposited molecules. Furthermore, the molecules itself can be tailored to allow via their self-assembly the potential fabrication of devices with an application potential, which is still unforeseeable at this time. Herein, we review efforts to use discrete (metallo)porphyrins for the formation of (sub)monolayers by surface-confined polymerization, of monolayers formed by supramolecular recognition and of thin films formed by sublimation techniques. Selected physical properties of these systems are reported as well. The application potential of those ensembles of (metallo)porphyrins in materials science is discussed.


1990 ◽  
Vol 43 (5) ◽  
pp. 583
Author(s):  
GL Price

Recent developments in the growth of semiconductor thin films are reviewed. The emphasis is on growth by molecular beam epitaxy (MBE). Results obtained by reflection high energy electron diffraction (RHEED) are employed to describe the different kinds of growth processes and the types of materials which can be constructed. MBE is routinely capable of heterostructure growth to atomic precision with a wide range of materials including III-V, IV, II-VI semiconductors, metals, ceramics such as high Tc materials and organics. As the growth proceeds in ultra high vacuum, MBE can take advantage of surface science techniques such as Auger, RHEED and SIMS. RHEED is the essential in-situ probe since the final crystal quality is strongly dependent on the surface reconstruction during growth. RHEED can also be used to calibrate the growth rate, monitor growth kinetics, and distinguish between various growth modes. A major new area is lattice mismatched growth where attempts are being made to construct heterostructures between materials of different lattice constants such as GaAs on Si. Also described are the new techniques of migration enhanced epitaxy and tilted superlattice growth. Finally some comments are given On the means of preparing large area, thin samples for analysis by other techniques from MBE grown films using capping, etching and liftoff.


Science ◽  
2011 ◽  
Vol 333 (6047) ◽  
pp. 1252-1254 ◽  
Author(s):  
Petra Schwille

How synthetic can “synthetic biology” be? A literal interpretation of the name of this new life science discipline invokes expectations of the systematic construction of biological systems with cells being built module by module—from the bottom up. But can this possibly be achieved, taking into account the enormous complexity and redundancy of living systems, which distinguish them quite remarkably from design features that characterize human inventions? There are several recent developments in biology, in tight conjunction with quantitative disciplines, that may bring this literal perspective into the realm of the possible. However, such bottom-up engineering requires tools that were originally designed by nature’s greatest tinkerer: evolution.


2018 ◽  
Vol 660 ◽  
pp. 120-160 ◽  
Author(s):  
M. Mozetič ◽  
A. Vesel ◽  
G. Primc ◽  
C. Eisenmenger-Sittner ◽  
J. Bauer ◽  
...  

2005 ◽  
Vol 58 (6) ◽  
pp. 442 ◽  
Author(s):  
John F. Quinn ◽  
Frank Caruso

Multilayer thin films were prepared based on hydrogen bonding between poly(N-isopropylacrylamide) (PNiPAAm), and poly(styrene sulfonate-co-maleic acid) (PSSMA). Since PSSMA is capable of associating with other polymers through both hydrogen bonding and electrostatic interactions, multilayer assemblies incorporating PSSMA, PNiPAAm, and intercalated poly(allylamine hydrochloride) (PAH) layers were also prepared. Intercalated PAH layers were included to improve the pH stability of the film by introducing electrostatic linkages into the assembly. Film construction was studied as a function of pH of the deposition solution and the number of inserted PAH layers. Film morphology varied significantly with incorporation of PAH into the film. It was also demonstrated that by intercalating several PAH layers within the PNiPAAm/PSSMA assembly, the pH stability of the films at pH 5.8 could be substantially improved.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Y. Djaoued ◽  
S. Balaji ◽  
R. Brüning

Recent developments in the synthesis of transition metal oxides in the form of porous thin films have opened up opportunities in the construction of electrochromic devices with enhanced properties. In this paper, synthesis, characterization and electrochromic applications of porous WO3thin films with different nanocrystalline phases, such as hexagonal, monoclinic, and orthorhombic, are presented. Asymmetric electrochromic devices have been constructed based on these porous WO3thin films. XRD measurements of the intercalation/deintercalation of Li+into/from the WO3layer of the device as a function of applied coloration/bleaching voltages show systematic changes in the lattice parameters associated with structural phase transitions in LixWO3. Micro-Raman studies show systematic crystalline phase changes in the spectra of WO3layers during Li+ion intercalation and deintercalation, which agree with the XRD data. These devices exhibit interesting optical modulation (up to ~70%) due to intercalation/deintercalation of Li ions into/from the WO3layer of the devices as a function of applied coloration/bleaching voltages. The obtained optical modulation of the electrochromic devices indicates that, they are suitable for applications in electrochromic smart windows.


2014 ◽  
Vol 43 (13) ◽  
pp. 4470-4493 ◽  
Author(s):  
Jianfeng Yao ◽  
Huanting Wang

The recent developments of zeolitic imidazolate framework (ZIF) membranes/films, ZIF–polymer mixed matrix membranes and their applications are reviewed in this article.


Sign in / Sign up

Export Citation Format

Share Document