scholarly journals Graphical representation standards for chemical structure diagrams (IUPAC Recommendations 2008)

2008 ◽  
Vol 80 (2) ◽  
pp. 277-410 ◽  
Author(s):  
Jonathan Brecher

The purpose of a chemical structure diagram is to convey information - typically the identity of a molecule - to another human reader or as input to a computer program. Any form of communication, however, requires that all participants understand each other. Recommendations are provided for the display of two-dimensional chemical structure diagrams in ways that avoid ambiguity and are likely to be understood correctly by all viewers. Examples are provided in many areas, ranging from issues of typography and color selection to the relative positioning of portions of a diagram and the rotational alignment of the diagram as a whole. Explanations describe which styles are preferred and which should be avoided. Principal recommendations include: 1) Know your audience: Diagrams that have a wide audience should be drawn as simply as possible; 2) Avoid ambiguous drawing styles; 3) Avoid inconsistent drawing styles.

2006 ◽  
Vol 78 (10) ◽  
pp. 1897-1970 ◽  
Author(s):  
Jonathan Brecher

Stereochemical configuration is determined by the relationship of atoms in three-dimensional space, yet remains most commonly represented in two-dimensional media such as printed publications or computer screens. Recommendations are provided for the display of three-dimensional stereochemical information in two-dimensional diagrams in ways that avoid ambiguity and are likely to be understood correctly by all viewers. Examples are provided for all types of stereochemical configuration, with explanation of which styles are preferred and which should be avoided. Principal recommendations include:Know your audience: Diagrams that have a wide audience should be drawn as simply as possible.Avoid ambiguous drawing styles.Avoid the use of perspective diagrams and class-specific drawing styles (Fischer projections, Haworth projections, etc.) when structures are to be interpreted by computers.Use solid wedges to indicate bonds that project above the plane of the paper and hashed wedges to indicate bonds that project below the plane of the paper; in both cases, the bonds must be oriented with the narrow end at the stereogenic center.Avoid connecting stereogenic centers with a stereobond.


Author(s):  
Makoto Shiojiri ◽  
Toshiyuki Isshiki ◽  
Tetsuya Fudaba ◽  
Yoshihiro Hirota

In hexagonal Se crystal each atom is covalently bound to two others to form an endless spiral chain, and in Sb crystal each atom to three others to form an extended puckered sheet. Such chains and sheets may be regarded as one- and two- dimensional molecules, respectively. In this paper we investigate the structures in amorphous state of these elements and the crystallization.HRTEM and ED images of vacuum-deposited amorphous Se and Sb films were taken with a JEM-200CX electron microscope (Cs=1.2 mm). The structure models of amorphous films were constructed on a computer by Monte Carlo method. Generated atoms were subsequently deposited on a space of 2 nm×2 nm as they fulfiled the binding condition, to form a film 5 nm thick (Fig. 1a-1c). An improvement on a previous computer program has been made as to realize the actual film formation. Radial distribution fuction (RDF) curves, ED intensities and HRTEM images for the constructed structure models were calculated, and compared with the observed ones.


Author(s):  
D. B. Nurseitov ◽  
N. A. Toiganbayeva ◽  
M. O. Kenzhebayeva

The article is devoted to the program "Converter", which allows you to translate the geologic-lithological profile of a mineral field into a digital format in the form of a two-dimensional array. The object-oriented programming language Python was used to write the program. The NumPy, OpenCV, and MatPlotlib libraries are actively used. The implementation of this program is based on image segmentation and finding the prevailing colors in the OpenCV library. Image segmentation is a preliminary step in image processing. The obtained values allow you to find out the density distribution in the area under consideration. The program "Converter" has a good graphical representation of the results obtained using the MatPlotlib library. The program writes the final converted result as a two-dimensional array to a text file along the desired path. Thus, the matrix is easy to read for further use in conjunction with other programs. The purpose of this work was to create a program that converts the geologic-lithological profile of the field into a digital format in the form of a two-dimensional array, for further use of this matrix as the distribution density of the oil field. The "Converter" program converts any geologic-lithological profile into a two-dimensional array in a matter of minutes.


1982 ◽  
Vol 28 (4) ◽  
pp. 867-875 ◽  
Author(s):  
M J Miller ◽  
P K Vo ◽  
C Nielsen ◽  
E P Geiduschek ◽  
N H Xuong

Abstract We describe a computer program system for finding, quantitating, and matching the protein spots resolved on a two-dimensional electropherogram. The programs that locate and quantitate the incorporation of radioactivity into individual spots are totally automatic, as are the programs for matching protein spots between two exposures of the same gel. A semi-automatic method is used to match protein spots between different gels. This procedure is quite fast with the use of a computer-graphic display, which is also helpful in the editing process. A data base is set up and programs have been written to correlate matched protein spots from multi-gel experiments and to efficiently plot out quantitative data from sequences of equivalent spots from many gels or even many multi-gel experiments. The practical use of this system is discussed.


1972 ◽  
Vol 11 (63) ◽  
pp. 407-414 ◽  
Author(s):  
F. W. Smith

Abstract A two-dimensional finite element computer program has been used to compute the elastic stress distribution in realistic multi-layered snow packs. Computations have been done on three-layered and five-layered snow packs intended to simulate conditions on the Lift Gully at Berthoud Pass, Colorado. Calculations have been performed to determine the effect of a layer of new snow and the effect of a weak sub-layer. Stress levels were obtained which are reasonable compared with available snow strength data.


Sign in / Sign up

Export Citation Format

Share Document