scholarly journals Susceptibility of Cattle to First-passage Intracerebral Inoculation with Chronic Wasting Disease Agent from White-tailed Deer

2007 ◽  
Vol 44 (4) ◽  
pp. 487-493 ◽  
Author(s):  
A. N. Hamir ◽  
J. M. Miller ◽  
R. A. Kunkle ◽  
S. M. Hall ◽  
J. A. Richt

Fourteen, 3-month-old calves were intracerebrally inoculated with the agent of chronic wasting disease (CWD) from white-tailed deer (CWDwtd) to compare the clinical signs and neuropathologic findings with those of certain other transmissible spongiform encephalopathies (TSE, prion diseases) that have been shown to be experimentally transmissible to cattle (sheep scrapie, CWD of mule deer [CWDmd], bovine spongiform encephalopathy [BSE], and transmissible mink encephalopathy). Two uninoculated calves served as controls. Within 26 months postinoculation (MPI), 12 inoculated calves had lost considerable weight and eventually became recumbent. Of the 12 inoculated calves, 11 (92%) developed clinical signs. Although spongiform encephalopathy (SE) was not observed, abnormal prion protein (PrPd) was detected by immunohistochemistry (IHC) and Western blot (WB) in central nervous system tissues. The absence of SE with presence of PrPd has also been observed when other TSE agents (scrapie and CWDmd) were similarly inoculated into cattle. The IHC and WB findings suggest that the diagnostic techniques currently used to confirm BSE would detect CWDwtd in cattle, should it occur naturally. Also, the absence of SE and a distinctive IHC pattern of CWDwtd and CWDmd in cattle suggests that it should be possible to distinguish these conditions from other TSEs that have been experimentally transmitted to cattle.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Belén Marín ◽  
Alicia Otero ◽  
Séverine Lugan ◽  
Juan Carlos Espinosa ◽  
Alba Marín-Moreno ◽  
...  

AbstractPigs are susceptible to infection with the classical bovine spongiform encephalopathy (C-BSE) agent following experimental inoculation, and PrPSc accumulation was detected in porcine tissues after the inoculation of certain scrapie and chronic wasting disease isolates. However, a robust transmission barrier has been described in this species and, although they were exposed to C-BSE agent in many European countries, no cases of natural transmissible spongiform encephalopathies (TSE) infections have been reported in pigs. Transmission of atypical scrapie to bovinized mice resulted in the emergence of C-BSE prions. Here, we conducted a study to determine if pigs are susceptible to atypical scrapie. To this end, 12, 8–9-month-old minipigs were intracerebrally inoculated with two atypical scrapie sources. Animals were euthanized between 22- and 72-months post inoculation without clinical signs of TSE. All pigs tested negative for PrPSc accumulation by enzyme immunoassay, immunohistochemistry, western blotting and bioassay in porcine PrP mice. Surprisingly, in vitro protein misfolding cyclic amplification demonstrated the presence of C-BSE prions in different brain areas from seven pigs inoculated with both atypical scrapie isolates. Our results suggest that pigs exposed to atypical scrapie prions could become a reservoir for C-BSE and corroborate that C-BSE prions emerge during interspecies passage of atypical scrapie.


2012 ◽  
Vol 93 (7) ◽  
pp. 1624-1629 ◽  
Author(s):  
Rona Wilson ◽  
Chris Plinston ◽  
Nora Hunter ◽  
Cristina Casalone ◽  
Cristiano Corona ◽  
...  

The association between bovine spongiform encephalopathy (BSE) and variant Creutzfeldt–Jakob disease (vCJD) has demonstrated that cattle transmissible spongiform encephalopathies (TSEs) can pose a risk to human health and raises the possibility that other ruminant TSEs may be transmissible to humans. In recent years, several novel TSEs in sheep, cattle and deer have been described and the risk posed to humans by these agents is currently unknown. In this study, we inoculated two forms of atypical BSE (BASE and H-type BSE), a chronic wasting disease (CWD) isolate and seven isolates of atypical scrapie into gene-targeted transgenic (Tg) mice expressing the human prion protein (PrP). Upon challenge with these ruminant TSEs, gene-targeted Tg mice expressing human PrP did not show any signs of disease pathology. These data strongly suggest the presence of a substantial transmission barrier between these recently identified ruminant TSEs and humans.


2006 ◽  
Vol 87 (7) ◽  
pp. 2109-2114 ◽  
Author(s):  
Chad Johnson ◽  
Jody Johnson ◽  
Joshua P. Vanderloo ◽  
Delwyn Keane ◽  
Judd M. Aiken ◽  
...  

The primary sequence of the prion protein affects susceptibility to transmissible spongiform encephalopathies, or prion diseases, in mice, sheep and humans. The Prnp gene sequence of free-ranging, Wisconsin white-tailed deer was determined and the Prnp genotypes of chronic wasting disease (CWD)-positive and CWD-negative deer were compared. Six amino acid changes were identified, two of which were located in pseudogenes. Two alleles, a Q→K polymorphism at codon 226 and a single octapeptide repeat insertion into the pseudogene, have not been reported previously. The predominant alleles – wild-type (Q95, G96 and Q226) and a G96S polymorphism – comprised almost 98 % of the Prnp alleles in the Wisconsin white-tailed deer population. Comparison of the allelic frequencies in the CWD-positive and CWD-negative deer suggested that G96S and a Q95H polymorphism were linked to a reduced susceptibility to CWD. The G96S allele did not, however, provide complete resistance, as a CWD-positive G96S/G96S deer was identified. The G96S allele was also linked to slower progression of the disease in CWD-positive deer based on the deposition of PrPCWD in the obex region of the medulla oblongata. Although the reduced susceptibility of deer with at least one copy of the Q95H or G96S allele is insufficient to serve as a genetic barrier, the presence of these alleles may modulate the impact of CWD on white-tailed deer populations.


Biomolecules ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 466
Author(s):  
Leonor Orge ◽  
Carla Lima ◽  
Carla Machado ◽  
Paula Tavares ◽  
Paula Mendonça ◽  
...  

Transmissible Spongiform Encephalopathies (TSEs) or prion diseases are a fatal group of infectious, inherited and spontaneous neurodegenerative diseases affecting human and animals. They are caused by the conversion of cellular prion protein (PrPC) into a misfolded pathological isoform (PrPSc or prion- proteinaceous infectious particle) that self-propagates by conformational conversion of PrPC. Yet by an unknown mechanism, PrPC can fold into different PrPSc conformers that may result in different prion strains that display specific disease phenotype (incubation time, clinical signs and lesion profile). Although the pathways for neurodegeneration as well as the involvement of brain inflammation in these diseases are not well understood, the spongiform changes, neuronal loss, gliosis and accumulation of PrPSc are the characteristic neuropathological lesions. Scrapie affecting small ruminants was the first identified TSE and has been considered the archetype of prion diseases, though atypical and new animal prion diseases continue to emerge highlighting the importance to investigate the lesion profile in naturally affected animals. In this report, we review the neuropathology and the neuroinflammation of animal prion diseases in natural hosts from scrapie, going through the zoonotic bovine spongiform encephalopathy (BSE), the chronic wasting disease (CWD) to the newly identified camel prion disease (CPD).


2021 ◽  
Vol 2 (3) ◽  
pp. 80-94
Author(s):  
Saif Jabbar Yasir ◽  
Taghreed Abdul Kareem Al- Makhzoomy

Prion diseases or transmissible spongiform encephalopathies (TSEs) are a family of rare progressive neurodegenerative disorders that affect both humans and animals. They are distinguished by long incubation periods, characteristic spongiform changes associated with neuronal loss, and a failure to induce inflammatory response. Prion diseases in animals, Scrapie in sheep, chronic wasting disease (CWD) in deer, bovine spongiform encephalopathy (commonly known as "mad cow disease") in cattle, and Creutzfeldt-Jakob disease in humans are all examples of infectious diseases. The prion protein (PrP) was identified in a patient in 2015, and it was previously believed to be the cause of all known mammalian prion diseases. However, The protein alpha-synuclein, which is thought to be responsible for MSA, was suggested to be the cause of the disease in 2015.


1999 ◽  
Vol 80 (10) ◽  
pp. 2765-2679 ◽  
Author(s):  
K. I. O’Rourke ◽  
T. E. Besser ◽  
M. W. Miller ◽  
T. F. Cline ◽  
T. R. Spraker ◽  
...  

The PrP gene encodes the putative causative agent of the transmissible spongiform encephalopathies (TSEs), a heterogeneous group of fatal, neurodegenerative disorders including human Creutzfeldt–Jakob disease, bovine spongiform encephalopathy, ovine scrapie and chronic wasting disease (CWD) of North American deer and elk. Polymorphisms in the PrP gene are associated with variations in relative susceptibility, pathological lesion patterns, incubation times and clinical course of TSEs of humans, mice and sheep. Sequence analysis of the PrP gene from Rocky Mountain elk showed only one amino acid change (Met to Leu at cervid codon 132). Homozygosity for Met at the corresponding polymorphic site (Met to Val) in humans (human codon 129) predisposes exposed individuals to some forms of Creutzfeldt–Jakob disease. In this study, Rocky Mountain elk homozygous for PrP codon 132 Met were over-represented in both free- ranging and farm-raised CWD-affected elk when compared to unaffected control groups.


Viruses ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 1454
Author(s):  
Satish K. Nemani ◽  
Jennifer L. Myskiw ◽  
Lise Lamoureux ◽  
Stephanie A. Booth ◽  
Valerie L. Sim

The majority of human prion diseases are sporadic, but acquired disease can occur, as seen with variant Creutzfeldt–Jakob disease (vCJD) following consumption of bovine spongiform encephalopathy (BSE). With increasing rates of cervid chronic wasting disease (CWD), there is concern that a new form of human prion disease may arise. Currently, there is no evidence of transmission of CWD to humans, suggesting the presence of a strong species barrier; however, in vitro and in vivo studies on the zoonotic potential of CWD have yielded mixed results. The emergence of different CWD strains is also concerning, as different strains can have different abilities to cross species barriers. Given that venison consumption is common in areas where CWD rates are on the rise, increased rates of human exposure are inevitable. If CWD was to infect humans, it is unclear how it would present clinically; in vCJD, it was strain-typing of vCJD prions that proved the causal link to BSE. Therefore, the best way to screen for CWD in humans is to have thorough strain-typing of harvested cervids and human CJD cases so that we will be in a position to detect atypical strains or strain shifts within the human CJD population.


2008 ◽  
Vol 82 (21) ◽  
pp. 10959-10962 ◽  
Author(s):  
Sergey Akimov ◽  
Oksana Yakovleva ◽  
Irina Vasilyeva ◽  
Carroll McKenzie ◽  
Larisa Cervenakova

ABSTRACT The transmission of variant Creutzfeldt-Jakob disease (vCJD) through blood transfusions has created new concerns about the iatrogenic spread of transmissible spongiform encephalopathies (TSEs)/prion diseases through blood and plasma-derived products and has increased the need to develop efficient methods for detection of the agent in biologics. Here, we report the first successful generation of spleen-derived murine stromal cell cultures that persistently propagate two mouse-adapted isolates of human TSE agents, mouse-adapted vCJD, and Fukuoka 1. These new cell cultures can be used efficiently for studies of the pathogenesis of the disease, for development of diagnostics and therapeutics, and as a rapid ex vivo assay for TSE inactivation/removal procedures.


Author(s):  
James W. Ironside ◽  
Matthew P. Frosch ◽  
Bernardino Ghetti

This chapter describes and illustrates the neuropathology of prion diseases, also known as transmissible spongiform encephalopathies. These diseases are characterized pathologically by varying combinations of spongiform change, neuronal loss, reactive gliosis, and prion protein (PrP) deposition. The morphologic pattern depends on the etiology of the disease and the genotype of the patient. Different clinicopathological phenotypes of sporadic Creutzfeldt-Jakob disease (CJD) have been described depending on the PRNP codon 129 genotype and the PrP isotype. A novel form known as variably protease-sensitive prionopathy has been recently identified. Familial prion diseases include familial CJD, Gerstmann-Sträussler-Scheinker disease, and fatal familial insomnia. Over 40 different PRNP mutations have been identified. Acquired prion diseases include Kuru; iatrogenic CJD, particularly in recipients of contaminated human pituitary hormone, and variant CJD, which seems closely related to bovine spongiform encephalopathy.


2005 ◽  
Vol 86 (1) ◽  
pp. 241-246 ◽  
Author(s):  
Robert A. Somerville ◽  
Scott Hamilton ◽  
Karen Fernie

Transmissible spongiform encephalopathies (TSEs), sometimes known as prion diseases, are caused by an infectious agent whose molecular properties have not been determined. Traditionally, different strains of TSE diseases are characterized by a series of phenotypic properties after passage in experimental animals. More recently it has been recognized that diversity in the degree to which an abnormal form of the host protein PrP, denoted PrPSc, is glycosylated and the migration of aglycosyl forms of PrPSc on immunoblots may have some differential diagnostic potential. It has been recognized that these factors are affected by the strain of TSE agent but also by other factors, e.g. location within the brain. This study shows in some cases, but not others, that host PrP genotype has a major influence on the degree of PrPSc glycosylation and migration on gels and provides further evidence of the effect of brain location. Accordingly both the degree of glycosylation and the apparent molecular mass of PrPSc may be of some value for differential diagnosis between TSE strains, but only when host effects are taken into account. Furthermore, the data inform the debate about how these differences arise, and favour hypotheses proposing that TSE agents affect glycosylation of PrP during its biosynthesis.


Sign in / Sign up

Export Citation Format

Share Document