Dynamic pressure sensing with a fiber-optic polarimetric pressure transducer with two-wavelength passive quadrature readout

1998 ◽  
Vol 37 (4) ◽  
pp. 663 ◽  
Author(s):  
Norbert Fürstenau ◽  
Markus Schmidt ◽  
Wojtek J. Bock ◽  
Waclaw Urbanczyk
Author(s):  
Hong-Seok Noh ◽  
Sangkyung Kim ◽  
Peter J. Hesketh ◽  
Hua Mao ◽  
Lid Wong

This paper presents miniature (diameter less than 1.5 mm) corrugated parylene/Cr/parylene diaphragms that provide ultra sensitive load-deflection (±100 μm for ±1kPa) and reflective surface for optical sensing. The design, fabrication, and test results of the ultra low pressure transducer for biomedical applications are reported here. The diaphragms have been attached to stainless steel tubes that are suitable for most endoscopes.


Author(s):  
Atia E. Khalifa ◽  
Dimitris M. Chatzigeorgiou ◽  
Kamal Youcef-Toumi ◽  
Yehia A. Khulief ◽  
Rached Ben-Mansour

Experiments were carried out to study the effectiveness of using inside-pipe measurements for leak detection in plastic pipes. Acoustic and pressure signals due to simulated leaks, opened to air, are measured and studied for designing a detection system to be deployed inside water networks of 100 mm (4 inch) pipe size. Results showed that leaks as small as 2 l/min can be detected using both hydrophone and dynamic pressure transducer under low pipe flow rates. The ratio between pipe flow rate and leak flow rate seems to be more important than the absolute value of leak flow. Increasing this ratio resulted in diminishing and low frequency leak signals. Sensor location and directionality, with respect to the leak, are important in acquiring clean signal.


1991 ◽  
Vol 16 (13) ◽  
pp. 1043 ◽  
Author(s):  
M. N. Charasse ◽  
M. Turpin ◽  
J. P. Le Pesant

Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7493
Author(s):  
Krystian L. Wlodarczyk ◽  
William N. MacPherson ◽  
Duncan P. Hand ◽  
M. Mercedes Maroto-Valer

In situ measurements are highly desirable in many microfluidic applications because they enable real-time, local monitoring of physical and chemical parameters, providing valuable insight into microscopic events and processes that occur in microfluidic devices. Unfortunately, the manufacturing of microfluidic devices with integrated sensors can be time-consuming, expensive, and “know-how” demanding. In this article, we describe an easy-to-implement method developed to integrate various “off-the-shelf” fiber optic sensors within microfluidic devices. To demonstrate this, we used commercial pH and pressure sensors (“pH SensorPlugs” and “FOP-MIV”, respectively), which were “reversibly” attached to a glass microfluidic device using custom 3D-printed connectors. The microfluidic device, which serves here as a demonstrator, incorporates a uniform porous structure and was manufactured using a picosecond pulsed laser. The sensors were attached to the inlet and outlet channels of the microfluidic pattern to perform simple experiments, the aim of which was to evaluate the performance of both the connectors and the sensors in a practical microfluidic environment. The bespoke connectors ensured robust and watertight connection, allowing the sensors to be safely disconnected if necessary, without damaging the microfluidic device. The pH SensorPlugs were tested with a pH 7.01 buffer solution. They measured the correct pH values with an accuracy of ±0.05 pH once sufficient contact between the injected fluid and the measuring element (optode) was established. In turn, the FOP-MIV sensors were used to measure local pressure in the inlet and outlet channels during injection and the steady flow of deionized water at different rates. These sensors were calibrated up to 140 mbar and provided pressure measurements with an uncertainty that was less than ±1.5 mbar. Readouts at a rate of 4 Hz allowed us to observe dynamic pressure changes in the device during the displacement of air by water. In the case of steady flow of water, the pressure difference between the two measuring points increased linearly with increasing flow rate, complying with Darcy’s law for incompressible fluids. These data can be used to determine the permeability of the porous structure within the device.


2016 ◽  
Vol 2016 (HiTEC) ◽  
pp. 000051-000055 ◽  
Author(s):  
Ayden Maralani ◽  
Levent Beker ◽  
Albert P. Pisano

Abstract The main objective is to develop sensing systems by integrating transducers such as pressure sensing elements with the interface circuitry in one package that can withstand harsh environments, particularly high temperatures up to 600 °C. To achieve that, both pressure transducer and interface circuitry are individually required to operate and survive up to 600 °C with acceptable degrees of reliability. This paper reports performance evaluation of fabricated 4H-SiC JFETs along with differential pairs for use in the interface circuitry. The test results are very promising and show stable performances from 25 °C up to 600 °C. Moreover, design, fabrication, and early test of a SiC based circular diaphragm type pressure transducer is also reported.


1999 ◽  
Author(s):  
Magdalena S. Nawrocka ◽  
Wojtek J. Bock ◽  
Waclaw Urbanczyk ◽  
Jan Wojcik

2010 ◽  
Vol 25 (4) ◽  
pp. 264-267 ◽  
Author(s):  
Michiko Nishiyama ◽  
Hiroyuki Sasaki ◽  
Shinichi Nose ◽  
Kazumasa Takami ◽  
Kazuhiro Watanabe

Sign in / Sign up

Export Citation Format

Share Document