Towards Integrated Sensors for Environments with Temperatures up to 600 °C

2016 ◽  
Vol 2016 (HiTEC) ◽  
pp. 000051-000055 ◽  
Author(s):  
Ayden Maralani ◽  
Levent Beker ◽  
Albert P. Pisano

Abstract The main objective is to develop sensing systems by integrating transducers such as pressure sensing elements with the interface circuitry in one package that can withstand harsh environments, particularly high temperatures up to 600 °C. To achieve that, both pressure transducer and interface circuitry are individually required to operate and survive up to 600 °C with acceptable degrees of reliability. This paper reports performance evaluation of fabricated 4H-SiC JFETs along with differential pairs for use in the interface circuitry. The test results are very promising and show stable performances from 25 °C up to 600 °C. Moreover, design, fabrication, and early test of a SiC based circular diaphragm type pressure transducer is also reported.

2016 ◽  
Vol 13 (4) ◽  
pp. 163-168
Author(s):  
Ayden Maralani ◽  
Levent Beker ◽  
Albert P. Pisano

The main objective of this study is to develop pressure-sensing systems by integrating pressure transducers with the interface circuitry in one package that can withstand harsh environments, particularly high temperatures up to 600°C. To achieve that, both pressure transducer and interface circuitry are individually required to operate and survive up to 600°C with acceptable degrees of reliability. This article reports performance evaluation of fabricated 4H-SiC Junction Field Effect Transistors along with differential pairs for use in the interface circuitry. The test results are very promising and show stable performances from 25°C up to 600°C. Moreover, design, fabrication, and early test (from 25°C up to 100°C) of an SiC-based circular diaphragm-type pressure transducer are also reported.


Author(s):  
Hong-Seok Noh ◽  
Sangkyung Kim ◽  
Peter J. Hesketh ◽  
Hua Mao ◽  
Lid Wong

This paper presents miniature (diameter less than 1.5 mm) corrugated parylene/Cr/parylene diaphragms that provide ultra sensitive load-deflection (±100 μm for ±1kPa) and reflective surface for optical sensing. The design, fabrication, and test results of the ultra low pressure transducer for biomedical applications are reported here. The diaphragms have been attached to stainless steel tubes that are suitable for most endoscopes.


Sensors ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 2712 ◽  
Author(s):  
Jihaeng Yi

This paper presents a monolithic sapphire pressure sensor that is constructed from two commercially available sapphire wafers through a combination of reactive-ion etching and wafer bonding. A Fabry–Perot (FP) cavity is sealed fully between the adhesive-free bonded sapphire wafers and thus acts as a pressure transducer. A combination of standard silica fiber, bonded sapphire wafers and free-space optics is proposed to couple the optical signal to the FP cavity of the sensor. The pressure in the FP cavity is measured by applying both white-light interferometry and diaphragm deflection theory over a range of 0.03 to 3.45 MPa at room temperature. With an all-sapphire configuration, the adhesive-free bonded sapphire sensor is expected to be suitable for in-situ pressure measurements in extreme harsh environments.


Author(s):  
Philip Levine ◽  
Daniel Patanjo ◽  
Wilkie Pak Lam

Software for monitoring and evaluating the performance of gas turbines is being developed under the auspices of Gas Research Institute (GRI). Reference [1] provides an overview of the GRI project. This paper describes the PEGASUS software and monitoring system. PEGASUS is an acronym for Performance Evaluation of GAS Users Systems. Field test results, on multi-shaft turbines used in the gas pipeline industry, have demonstrated the potential of the software. The software and instrumentation, can help identify maintenance and upgrade actions to improve performance.


2016 ◽  
Vol 11 (4) ◽  
pp. 302-312 ◽  
Author(s):  
Meor Othman Hamzah ◽  
Seyed Reza Omranian

Many factors affecting pavement performance include variations in binder composition and environmental conditions during asphalt mixture production. Hence, predicting pavement performance is a difficult task. This paper aims to investigate the effects of short term aging on binder viscosity at high temperature. In order to predict the effects of short term aging on the asphalt binder viscosity at high temperatures, a Response Surface Method was performed on the Rotational Viscometer test results. An experimental matrix was planned based on the central composite design for aging duration and test temperature. The test results showed that aging increased the binder viscosity, while increasing test temperature decreased the corresponding value. However, aging effects differ and depend on binder types, test temperatures and aging conditions. It was also found that the Response Surface Method is a fast, effective and reliable method to predict the effects of aging on binder viscosity behaviour at high temperatures.


Sensor Review ◽  
2018 ◽  
Vol 38 (2) ◽  
pp. 248-258
Author(s):  
Gobi K. ◽  
Kannapiran B. ◽  
Devaraj D. ◽  
Valarmathi K.

Purpose The conventional strain gauge type pressure sensor suffers in static testing of engines due to the contact transduction method. This paper aims to focus on the concept of non-contact transduction-based pressure sensor using eddy current displacement sensing coil (ECDS) to overcome the temperature limitations of the strain gauge type pressure sensor. This paper includes the fabrication of prototypes of the proposed pressure sensor and its performance evaluation by static calibration. The fabricated pressure sensor is proposed to measure pressure in static test environment for a short period in the order of few seconds. The limitations of the fabricated pressure sensor related to temperature problems are highlighted and the suitable design changes are recommended to aid the future design. Design/methodology/approach The design of ECDS-based pressure sensor is aimed to provide non-contact transduction to overcome the limitations of the strain gauge type of pressure sensor. The ECDS is designed and fabricated with two configurations to measure deflection of the diaphragm corresponding to the applied pressure. The fabricated ECDS is calibrated using a standard micro meter to ensure transduction within limits. The fabricated prototypes of pressure sensors are calibrated using dead weight tester, and the calibration results are analyzed to select the best configuration. The proposed pressure sensor is tested at different temperatures, and the test results are analyzed to provide recommendations to overcome the shortcomings. Findings The performance of the different configurations of the pressure sensor using ECDS is evaluated using the calibration data. The analysis of the calibration results indicates that the pressure sensor using ECDS (coil-B) with the diaphragm as target is the best configuration. The accuracy of the fabricated pressure sensor with best configuration is ±2.8 per cent and the full scale (FS) output is 3.8 KHz. The designed non-contact transduction method extends the operating temperature of the pressure sensor up to 150°C with the specified accuracy for the short period. Originality/value Most studies of eddy current sensing coil focus on the displacement and position measurement but not on the pressure measurement. This paper is concerned with the design of the pressure sensor using ECDS to realize the non-contact transduction to overcome the limitations of strain gauge type pressure sensors and evaluation of the fabricated prototypes. It is shown that the accuracy of the proposed pressure sensor is not affected by the high temperature for the short period due to non-contact transduction using ECDS.


1937 ◽  
Vol 4 (1) ◽  
pp. A21-A24
Author(s):  
Joseph Marin

Abstract The author discusses the stresses in machine and structural members subjected to high temperatures as determined by theories advanced by Bailey and St. Venant, the latter of which has been stated by Soderberg. He compares the results obtained by the application of these two theories, and shows that the results from each theory agree equally well with test results. Finally, various cases of thin tubes and the problem of the thick cylinder are considered, using each theory.


2019 ◽  
Vol 282 ◽  
pp. 02050
Author(s):  
Michael A. Lacasse ◽  
Nathan Van Den Bossche ◽  
Stephanie Van Linden ◽  
Travis V. Moore

There is an increase in the use of hygrothermal models to complete the performance evaluation of walls assemblies, either in respect to design of new assembles or the retrofit of existing wall assemblies. To this end there are guides available in which is provided information on moisture loads to wall assemblies. This includes, for example, Criteria for Moisture-Control Design Analysis in Buildings given in ASHRAE 160, Assessment of moisture transfer by numerical simulation provided in EN 15026, and NRC’s “Guidelines for Design for Durability of the Building Envelope”. The designer of a new assembly or evaluator of an existing wall is tasked with having to determine what moisture loads to apply to the wall and where to apply this load within the assembly. Typically there is little or no information that is readily available regarding moisture loads to walls and thus the suggested hourly moisture load, as given in ASHRAE 160, is 1% by weight of the total driving rain load to the wall (i.e. kg/m2-hr). In this paper, a brief compendium of water entry test results derived from laboratory tests of various types of wall assemblies is provided from which estimates of moisture loads to different types of wall can be developed. Water entry test results are given of wood frame walls typically used in housing, but also metal-glass curtain walls and other commercial wall assemblies, where possible, in terms of driving loads to the wall.


2014 ◽  
Vol 975 ◽  
pp. 149-153 ◽  
Author(s):  
Lorenço Neckel Jr. ◽  
Arthur G. Weiss ◽  
Günter Motz ◽  
Dachamir Hotza ◽  
Márcio C. Fredel

Coatings of polysilazane-based ceramics are a promising technology for the protection of steels for applications at high temperatures and chemically harsh environments where, currently, special and expensive grades of steel are used for. To this work, the polymer-ceramic transformation behavior of VL-20 polysilazane precursor and 8%YSZ and glassceramic powders as fillers, and their variables were evaluated, and the coatings on stainless steel AISI 304 substrates were characterized. The first obtained coatings showed good adherence, but also high porosity.


Sign in / Sign up

Export Citation Format

Share Document