Scattering measurements on optical disks and their relation to media noise

2001 ◽  
Vol 40 (26) ◽  
pp. 4728 ◽  
Author(s):  
Xiaodong Xun ◽  
Chubing Peng ◽  
Kimihiro Saito ◽  
Masud Mansuripur
Author(s):  
Takao Suzuki ◽  
Hossein Nuri

For future high density magneto-optical recording materials, a Bi-substituted garnet film ((BiDy)3(FeGa)5O12) is an attractive candidate since it has strong magneto-optic effect at short wavelengths less than 600 nm. The signal in read back performance at 500 nm using a garnet film can be an order of magnitude higher than a current rare earth-transition metal amorphous film. However, the granularity and surface roughness of such crystalline garnet films are the key to control for minimizing media noise.We have demonstrated a new technique to fabricate a garnet film which has much smaller grain size and smoother surfaces than those annealed in a conventional oven. This method employs a high ramp-up rate annealing (Γ = 50 ~ 100 C/s) in nitrogen atmosphere. Fig.1 shows a typical microstruture of a Bi-susbtituted garnet film deposited by r.f. sputtering and then subsequently crystallized by a rapid thermal annealing technique at Γ = 50 C/s at 650 °C for 2 min. The structure is a single phase of garnet, and a grain size is about 300A.


2003 ◽  
Vol 762 ◽  
Author(s):  
Claudio J. Oton ◽  
Zeno Gaburro ◽  
Mher Ghulinyan ◽  
Nicola Daldosso ◽  
Lucio Pancheri ◽  
...  

AbstractWe report the observation of strongly anisotropic scattering of laser light at oblique incidence on (100)-oriented porous silicon layers. We performed angle-resolved light scattering measurements and three concentric rings were observed. Modeling porous silicon by means of nanometric columnar air pores and an effective anisotropic uniaxial dielectric constant explains the observed phenomenon, and besides, the observation of the angle aperture of these rings allows a direct measurement of relative birefringence. We finally study the changes of optical anisotropy after different modifications of the structure.


1993 ◽  
Author(s):  
WALTER GILLESPIE ◽  
DANIEL BERSHADER ◽  
SURENDRA SHARMA ◽  
STEPHEN RUFFIN

2020 ◽  
Vol 117 (10) ◽  
pp. 5168-5175 ◽  
Author(s):  
Joel M. Sarapas ◽  
Tyler B. Martin ◽  
Alexandros Chremos ◽  
Jack F. Douglas ◽  
Kathryn L. Beers

Uncharged bottlebrush polymer melts and highly charged polyelectrolytes in solution exhibit correlation peaks in scattering measurements and simulations. Given the striking superficial similarities of these scattering features, there may be a deeper structural interrelationship in these chemically different classes of materials. Correspondingly, we constructed a library of isotopically labeled bottlebrush molecules and measured the bottlebrush correlation peak position q*=2π/ξ by neutron scattering and in simulations. We find that the correlation length scales with the backbone concentration, ξ∼cBB−0.47, in striking accord with the scaling of ξ with polymer concentration cP in semidilute polyelectrolyte solutions (ξ∼cP−1/2). The bottlebrush correlation peak broadens with decreasing grafting density, similar to increasing salt concentration in polyelectrolyte solutions. ξ also scales with sidechain length to a power in the range of 0.35–0.44, suggesting that the sidechains are relatively collapsed in comparison to the bristlelike configurations often imagined for bottlebrush polymers.


Sign in / Sign up

Export Citation Format

Share Document