Accurate Performance Estimation of high-speed Digital Optical Signals

Author(s):  
A. Peracchi ◽  
L. Banchi ◽  
R. Corsini ◽  
E. Ciaramella
Telecom ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 167-180
Author(s):  
George K. Varotsos ◽  
Hector E. Nistazakis ◽  
Konstantinos Aidinis ◽  
Fadi Jaber ◽  
Mohd Nasor ◽  
...  

Recent developments in both optical wireless communication (OWC) systems and implanted medical devices (IMDs) have introduced transdermal optical wireless (TOW) technology as a viable candidate for extremely high-speed in-body to out-of-body wireless data transmissions, which are growing in demand for many vital biomedical applications, including telemetry with medical implants, health monitoring, neural recording and prostheses. Nevertheless, this emerging communication modality is primarily hindered by skin-induced attenuation of the propagating signal bit carrier along with its stochastic misalignment-induced fading. Thus, by considering a typical modulated retroreflective (MRR) TOW system with spatial diversity and optimal combining (OC) for signal reception in this work, we focus, for the first time in the MRR TOW literature, on the stochastic nature of generalized pointing errors with non-zero boresight (NZB). Specifically, under these circumstances, novel analytical mathematical expressions were derived for the total average bit error rate (BER) of various system configurations. Their results revealed significant outage performance enhancements when spatial diversity was utilized. Moreover, taking into consideration the total transdermal pathloss along with the effects of stochastic NZB pointing errors, the critical average signal-to-noise ratio (SNR) metric was evaluated for typical power spectral-density values.


2015 ◽  
Vol 2015 (1) ◽  
pp. 000609-000615 ◽  
Author(s):  
John Mazurowski

Present fiber optic connections need to align two or more optical fibers to accuracies of microns (multimode fiber) and tenths of a micron (single more fiber). For connections in rugged applications, consisting of wide temperature ranges, substantial vibration, or in the presence of contaminants, the alignment of normal physical contact connections becomes even more difficult. New expanded beam connectors make fiber optic connections more durable, and help stabilize the transmission of high speed optical signals between systems, boxes, boards, and devices in these harsh environments.


2020 ◽  
Vol 124 (1275) ◽  
pp. 731-766
Author(s):  
T. Fitzgibbon ◽  
M. Woodgate ◽  
G. Barakos

ABSTRACTThis paper provides an assessment of current rotor design comparison practices. First, the employed CFD method is validated for a number of rotor designs and is shown to achieve accurate performance predictions in hover and high-speed forward flight. Based on CFD results, a detailed investigation is performed in terms of comparing different rotor designs. The CFD analysis highlighted the need of high fidelity methods due to the subtle aerodynamics involved in advanced planforms. Nevertheless, the paper suggests that the correct basis for comparison in terms of performance metrics must be used to inform decisions about the suitability of the rotor blades designs for specific applications. In particular, when comparing blades of advanced planforms, direct torque and thrust comparisons are better than the commonly used lift to drag ratio and figure of merit.


Author(s):  
Avinash Sukadeo Pawar

As the technology moving towards lower voltage for high stability and accurate performance. We design low voltage current mirror using IGFET, FDSOI, CNTFET.These transistor moving towards low-voltage high-speed performance. Here in this paper, we have design low voltage current mirror for Accurate duplication of current. To obtain accurate duplication of current we verify the performance of low voltage current mirror on FDSOI and CNTFET Transistor having 32nm technology.The circuit is simulated with 32nm technology for FDSOI and CNFET. They operate at lower power supply than IGFET. The simulation results show the improvement in knee voltage 1.7v and 1.3v for the current mirror.


2019 ◽  
Vol 9 (6) ◽  
pp. 1329-1336
Author(s):  
G. Brindha ◽  
G. Rohini

In this research work M × N, DNA micro array is utilized with the help of Quantum optimization of evolutionary algorithm for accurate performance estimation in the system configuration provides high throughput using clinical prognosis application based on image processing. In an existing system the droplet-manipulation method based on a "cross-referencing" method that is used for "row" and "columns" to access electrodes. In our research work proposed Advanced Digital Micro Fluidic Biochip (ADMFB) process is a synthesis configuration of linear way dynamic routing segment used faster execution span related to the previous bio chip module. These techniques are minimizing the consumption of power and area. Experimental outputs shows the improvement in the static power, dynamic power and delay while comparing the previous research work and proposed research work.


Sign in / Sign up

Export Citation Format

Share Document