scholarly journals Error Performance Estimation of Modulated Retroreflective Transdermal Optical Wireless Links with Diversity under Generalized Pointing Errors

Telecom ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 167-180
Author(s):  
George K. Varotsos ◽  
Hector E. Nistazakis ◽  
Konstantinos Aidinis ◽  
Fadi Jaber ◽  
Mohd Nasor ◽  
...  

Recent developments in both optical wireless communication (OWC) systems and implanted medical devices (IMDs) have introduced transdermal optical wireless (TOW) technology as a viable candidate for extremely high-speed in-body to out-of-body wireless data transmissions, which are growing in demand for many vital biomedical applications, including telemetry with medical implants, health monitoring, neural recording and prostheses. Nevertheless, this emerging communication modality is primarily hindered by skin-induced attenuation of the propagating signal bit carrier along with its stochastic misalignment-induced fading. Thus, by considering a typical modulated retroreflective (MRR) TOW system with spatial diversity and optimal combining (OC) for signal reception in this work, we focus, for the first time in the MRR TOW literature, on the stochastic nature of generalized pointing errors with non-zero boresight (NZB). Specifically, under these circumstances, novel analytical mathematical expressions were derived for the total average bit error rate (BER) of various system configurations. Their results revealed significant outage performance enhancements when spatial diversity was utilized. Moreover, taking into consideration the total transdermal pathloss along with the effects of stochastic NZB pointing errors, the critical average signal-to-noise ratio (SNR) metric was evaluated for typical power spectral-density values.

Technologies ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 60
Author(s):  
George K. Varotsos ◽  
Hector E. Nistazakis ◽  
Konstantinos Aidinis ◽  
Fadi Jaber ◽  
K. K. Mujeeb Rahman

Transdermal optical wireless (TOW) communication links have recently gained particular research and commercial attention as a viable alternative for establishing high speed and effective implantable data transmissions, which is vital for a variety of neuroprosthetic and other medical applications. However, the development of this optical telemetry modality with medical implanted devices (IMDs) is adversely affected by skin-induced photon absorption, scattering and pointing errors effects. Thus, in this work a minimum mean-square error (MMSE) criterion is proposed for the estimation of the optical signal intensity in a typical TOW link of varying path loss and misalignment-induced fading characteristics. In this context, the stochastic nature of the transmitter–receiver misalignment has been considered and jointly modeled with transdermal path loss. Additionally, the link is assumed to employ the suitable On–Off Keying (OOK) with intensity modulation and direct detection scheme as well as a PIN photodiode at the receiver side for signal detection. Under these assumptions the results demonstrate that the stochastic amount of pointing mismatch strongly affects the received irradiance estimation.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Jian Dang ◽  
Jiajun Gao ◽  
Zaichen Zhang ◽  
Liang Wu ◽  
Bingcheng Zhu ◽  
...  

Optical mobile communication (OMC) is a recently proposed optical wireless communication concept aiming to provide very high-speed data rate optical wireless links for multiple and, in general, distributed mobile users. Previous work analyzed the rate performance of a two-user OMC system without user mobility. This paper extends the rate analysis to multiple users with mobility. The scenario of employing multiple light sources with possible user grouping is also considered. User mobility and multiple light sources lead to new challenges on the system design which are addressed for broadcast downlink communication in this work. Simulations show that user mobility decreases the rate, and the way of how to utilize multiple light sources has great impact on the performance. In particular, simultaneous power division usage of multiple light sources through user grouping and power allocation brings almost no gain as compared with the case of single light source. On the other hand, time division usage of multiple light sources is capable of compensating for the hardware deficiency and thus increasing the rate greatly. It is found that OMC is not only superior to the conventional scheme with nonadjustable channel gains but also outperforms free space optical scheme at high signal-to-noise ratio region.


2017 ◽  
Vol 39 (1) ◽  
Author(s):  
Abdallah Ahmad Shatnawi ◽  
Mohd Nazri Bin Mohd Warip ◽  
Anuar Mat Safar

AbstractInter-satellite communication is one of the revolutionary techniques that can be used to transmit the high speed date between satellites. However, space turbulences such as transmitting pointing errors play a significant role while designing inter-satellite communication systems. Those turbulences cause shutdown of inter-satellite link due to increase of attenuation during data transmission through link. The present work aims to develop an integrated data transmission system incorporating alternate mark inversion (AMI), wavelength division multiplexing (WDM), and polarization interleaving (PI) scheme for transmitting data 160 Gbps over inter-satellite link of 1,000 km under the influence of space turbulences. The performance of the integrated data transmission of 160 Gbps data up to 1,000 km will be evaluated under the influence of space turbulences by means of signal to noise ratio (SNR), total received power, bit error rate and eye diagram.


2018 ◽  
Vol 0 (0) ◽  
Author(s):  
Pritam Keshari Sahoo

AbstractIn this paper authors have studied the error performance of an ISI compensating modulation technique called phase sampled RZ-GMSK. The numerical results are derived suitably for optical wireless back-haul networks under log-normal turbulence fading. It is seen that the proposed modulation technique outperforms other techniques at higher turbulence and for high speed data transmission.


Computation ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 33 ◽  
Author(s):  
Varotsos ◽  
Nistazakis ◽  
Aidinis ◽  
Jaber ◽  
Rahman

The last few years, the scientific field of optical wireless communications (OWC) has witnessed tremendous progress, as reflected in the continuous emergence of new successful high data rate services and variable sophisticated applications. One such development of vital research importance and interest is the employment of high speed, robust, and energy-effective transdermal optical wireless (TOW) links for telemetry with implantable medical devices (IMDs) that also have made considerable progress lately for a variety of medical applications, mainly including neural recording and prostheses. However, the outage performance of such TOW links is significantly degraded due to the strong attenuation that affects the propagating information-bearing optical signal through the skin, along with random misalignments between transmitter and receiver terminals, commonly known as pointing error effect. In order to anticipate this, in this work we introduce a SIMO TOW reception diversity system that employs either OOK or more power-effective L-PPM schemes. Taking into account the joint impact of skin-induced attenuation and non-zero boresight pointing errors, modeled through the suitable Beckmann distribution, novel closed-form mathematical expressions for the average BER of the total TOW system are derived. Thus, the possibility of enhancing the TOW availability by using reception diversity configurations along with the appropriate modulation format is investigated. Finally, the corresponding numerical results are presented using the new derived theoretical outcomes.


Author(s):  
Mustafa H. Ali ◽  
Tariq A. Hassan ◽  
Hiba A. Abu-Alsaad

In metropolitan communication infrastructures a revolutionary technique is emerge known as terrestrial optical wireless communication (OWC), which makes a high-rise building connection is possible. Even with this solution, there are many other problems like the influence of haze and fog in the propagation channel which obstruct and scatter OWC propagation light and consequently led to a big attenuation, due to propagate in temporal, angular and spatial of the light signal. Not to mention the minimum visibility that discourages the implementation of the pointing errors (PE) and tracking system. This present work aims to analyze the interrelation between multiple scattering (dense fog, heavy fog, light fog, heavy haze and light haze) and receiver PE under modified duo-binary return-to-zero (MDRZ) system. We found that PE caused by beam swag is the main controlling factor and industriously minimize the link margin, signal-to-noise ratio (SNR), and raise the bit error rate (BER) when there is an increasing the turbulence strength and the track length. We recommended to guarantee transmitter– receiver alignment by installing a variable field of view (FOV) receiver (a tracking system) to overcome the scattering impact of the fog that make render urban laser communication effective in the presence of PE.


Sign in / Sign up

Export Citation Format

Share Document