Achieving Invisibility in the Far Field with a 3D Carpet Cloak Design for Visible Light

Author(s):  
Daniely G. Silva ◽  
Poliane A. Teixeira ◽  
Lucas H. Gabrielli ◽  
Mateus A. F. C. Junqueira ◽  
Danilo H. Spadoti
Keyword(s):  
2009 ◽  
Vol 79-82 ◽  
pp. 1383-1386
Author(s):  
Yun Lin Chen ◽  
Hai Wei Li ◽  
Yuan An Li

Using the tightly focused visible light (wavelength λ=488nm) illuminating, the ferroelectric domain patterns of the undoped lithium niobate crystal have been demonstrated. The influence of the visible light intensity on the domain nucleation field was investigated. The reduction of nucleation field decreases exponentially with increasing incident irradiation intensity. Once a domain is nucleated it can be dictated by the far-field light diffraction patterns. An assumption is proposed that the reduction of nucleation field is directly related to the defects mobility and structure of the crystals.


2009 ◽  
Vol 48 (51) ◽  
pp. 9747-9750 ◽  
Author(s):  
Andrei V. Naumov ◽  
Alexey A. Gorshelev ◽  
Yury G. Vainer ◽  
Lothar Kador ◽  
Jürgen Köhler

2009 ◽  
Vol 48 (51) ◽  
pp. 9568-9568
Author(s):  
Andrei V. Naumov ◽  
Alexey A. Gorshelev ◽  
Yury G. Vainer ◽  
Lothar Kador ◽  
Jürgen Köhler

2018 ◽  
Vol 190 ◽  
pp. 03014
Author(s):  
Yuri Vainer ◽  
Alexander Zybin ◽  
Nikolay Gippius ◽  
Anastasia Malek

We will present the novel experimental far-field optical microscopy technique for detection of single nanoparticles, which weakly absorb a visible light and are characterized by refractive index close to its value in nearby environment (including particles of organic and biological origin: polymer nanoparticles, microand extracellular vesicles, liposomes, viruses etc).


Author(s):  
N. Bonnet ◽  
M. Troyon ◽  
P. Gallion

Two main problems in high resolution electron microscopy are first, the existence of gaps in the transfer function, and then the difficulty to find complex amplitude of the diffracted wawe from registered intensity. The solution of this second problem is in most cases only intended by the realization of several micrographs in different conditions (defocusing distance, illuminating angle, complementary objective apertures…) which can lead to severe problems of contamination or radiation damage for certain specimens.Fraunhofer holography can in principle solve both problems stated above (1,2). The microscope objective is strongly defocused (far-field region) so that the two diffracted beams do not interfere. The ideal transfer function after reconstruction is then unity and the twin image do not overlap on the reconstructed one.We show some applications of the method and results of preliminary tests.Possible application to the study of cavitiesSmall voids (or gas-filled bubbles) created by irradiation in crystalline materials can be observed near the Scherzer focus, but it is then difficult to extract other informations than the approximated size.


Author(s):  
Shawn Williams ◽  
Xiaodong Zhang ◽  
Susan Lamm ◽  
Jack Van’t Hof

The Scanning Transmission X-ray Microscope (STXM) is well suited for investigating metaphase chromosome structure. The absorption cross-section of soft x-rays having energies between the carbon and oxygen K edges (284 - 531 eV) is 6 - 9.5 times greater for organic specimens than for water, which permits one to examine unstained, wet biological specimens with resolution superior to that attainable using visible light. The attenuation length of the x-rays is suitable for imaging micron thick specimens without sectioning. This large difference in cross-section yields good specimen contrast, so that fewer soft x-rays than electrons are required to image wet biological specimens at a given resolution. But most imaging techniques delivering better resolution than visible light produce radiation damage. Soft x-rays are known to be very effective in damaging biological specimens. The STXM is constructed to minimize specimen dose, but it is important to measure the actual damage induced as a function of dose in order to determine the dose range within which radiation damage does not compromise image quality.


Author(s):  
C. Jacobsen ◽  
J. Fu ◽  
S. Mayer ◽  
Y. Wang ◽  
S. Williams

In scanning luminescence x-ray microscopy (SLXM), a high resolution x-ray probe is used to excite visible light emission (see Figs. 1 and 2). The technique has been developed with a goal of localizing dye-tagged biochemically active sites and structures at 50 nm resolution in thick, hydrated biological specimens. Following our initial efforts, Moronne et al. have begun to develop probes based on biotinylated terbium; we report here our progress towards using microspheres for tagging.Our initial experiments with microspheres were based on commercially-available carboxyl latex spheres which emitted ~ 5 visible light photons per x-ray absorbed, and which showed good resistance to bleaching under x-ray irradiation. Other work (such as that by Guo et al.) has shown that such spheres can be used for a variety of specific labelling applications. Our first efforts have been aimed at labelling ƒ actin in Chinese hamster ovarian (CHO) cells. By using a detergent/fixative protocol to load spheres into cells with permeabilized membranes and preserved morphology, we have succeeded in using commercial dye-loaded, spreptavidin-coated 0.03μm polystyrene spheres linked to biotin phalloidon to label f actin (see Fig. 3).


Sign in / Sign up

Export Citation Format

Share Document